亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper studies the case of possibly high-dimensional covariates in the regression discontinuity design (RDD) analysis. In particular, we propose estimation and inference methods for the RDD models with covariate selection which perform stably regardless of the number of covariates. The proposed methods combine the local approach using kernel weights with `1-penalization to handle high-dimensional covariates, and the combination is new in the literature. We provide theoretical and numerical results which illustrate the usefulness of the proposed methods. Theoretically, we present risk and coverage properties for our point estimation and inference methods, respectively. Numerically, our simulation experiments and empirical example show the robust behaviors of the proposed methods to the number of covariates in terms of bias and variance for point estimation and coverage probability and interval length for inference.

相關內容

I propose kernel ridge regression estimators for nonparametric dose response curves and semiparametric treatment effects in the setting where an analyst has access to a selected sample rather than a random sample; only for select observations, the outcome is observed. I assume selection is as good as random conditional on treatment and a sufficiently rich set of observed covariates, where the covariates are allowed to cause treatment or be caused by treatment -- an extension of missingness-at-random (MAR). I propose estimators of means, increments, and distributions of counterfactual outcomes with closed form solutions in terms of kernel matrix operations, allowing treatment and covariates to be discrete or continuous, and low, high, or infinite dimensional. For the continuous treatment case, I prove uniform consistency with finite sample rates. For the discrete treatment case, I prove root-n consistency, Gaussian approximation, and semiparametric efficiency.

In this paper we investigate the flexibility of matrix distributions for the modeling of mortality. Starting from a simple Gompertz law, we show how the introduction of matrix-valued parameters via inhomogeneous phase-type distributions can lead to reasonably accurate and relatively parsimonious models for mortality curves across the entire lifespan. A particular feature of the proposed model framework is that it allows for a more direct interpretation of the implied underlying aging process than some previous approaches. Subsequently, towards applications of the approach for multi-population mortality modeling, we introduce regression via the concept of proportional intensities, which are more flexible than proportional hazard models, and we show that the two classes are asymptotically equivalent. We illustrate how the model parameters can be estimated from data by providing an adapted EM algorithm for which the likelihood increases at each iteration. The practical feasibility and competitiveness of the proposed approach are illustrated for several sets of mortality data.

The delta method creates more general inference results when coupled with central limit theorem results for the finite population. This opens up a range of new estimators for which we can find finite population asymptotic properties. We focus on the use of this method to derive asymptotic distributional results and variance expressions for causal estimators. We illustrate the use of the method by obtaining a finite population asymptotic distribution for a causal ratio estimator.

The task of approximating an arbitrary convex function arises in several learning problems such as convex regression, learning with a difference of convex (DC) functions, and approximating Bregman divergences. In this paper, we show how a broad class of convex function learning problems can be solved via a 2-block ADMM approach, where updates for each block can be computed in closed form. For the task of convex Lipschitz regression, we establish that our proposed algorithm converges at the rate of $O(n^3 d^{1.5}+n^2 d^{2.5}+n d^3)$ for a dataset $X \in R^{n\times d}$. This new rate improves the state of the art $O(n^5d^2$) available by interior point methods if $d = o( n^4)$. Further we provide similar solvers for DC regression and Bregman divergence learning. Unlike previous approaches, our method is amenable to the use of GPUs. We demonstrate on regression and metric learning experiments that our approach is up to 20 times faster than the existing method, and produces results that are comparable to state-of-the-art.

Estimating the structures at high or low quantiles has become an important subject and attracted increasing attention across numerous fields. However, due to data sparsity at tails, it usually is a challenging task to obtain reliable estimation, especially for high-dimensional data. This paper suggests a flexible parametric structure to tails, and this enables us to conduct the estimation at quantile levels with rich observations and then to extrapolate the fitted structures to far tails. The proposed model depends on some quantile indices and hence is called the quantile index regression. Moreover, the composite quantile regression method is employed to obtain non-crossing quantile estimators, and this paper further establishes their theoretical properties, including asymptotic normality for the case with low-dimensional covariates and non-asymptotic error bounds for that with high-dimensional covariates. Simulation studies and an empirical example are presented to illustrate the usefulness of the new model.

This paper investigates pooling strategies for tail index and extreme quantile estimation from heavy-tailed data. To fully exploit the information contained in several samples, we present general weighted pooled Hill estimators of the tail index and weighted pooled Weissman estimators of extreme quantiles calculated through a nonstandard geometric averaging scheme. We develop their large-sample asymptotic theory across a fixed number of samples, covering the general framework of heterogeneous sample sizes with different and asymptotically dependent distributions. Our results include optimal choices of pooling weights based on asymptotic variance and MSE minimization. In the important application of distributed inference, we prove that the variance-optimal distributed estimators are asymptotically equivalent to the benchmark Hill and Weissman estimators based on the unfeasible combination of subsamples, while the AMSE-optimal distributed estimators enjoy a smaller AMSE than the benchmarks in the case of large bias. We consider additional scenarios where the number of subsamples grows with the total sample size and effective subsample sizes can be low. We extend our methodology to handle serial dependence and the presence of covariates. Simulations confirm that our pooled estimators perform virtually as well as the benchmark estimators. Two applications to real weather and insurance data are showcased.

We provide (high probability) bounds on the condition number of random feature matrices. In particular, we show that if the complexity ratio $\frac{N}{m}$ where $N$ is the number of neurons and $m$ is the number of data samples scales like $\log^{-1}(N)$ or $\log(m)$, then the random feature matrix is well-conditioned. This result holds without the need of regularization and relies on establishing various concentration bounds between dependent components of the random feature matrix. Additionally, we derive bounds on the restricted isometry constant of the random feature matrix. We prove that the risk associated with regression problems using a random feature matrix exhibits the double descent phenomenon and that this is an effect of the double descent behavior of the condition number. The risk bounds include the underparameterized setting using the least squares problem and the overparameterized setting where using either the minimum norm interpolation problem or a sparse regression problem. For the least squares or sparse regression cases, we show that the risk decreases as $m$ and $N$ increase, even in the presence of bounded or random noise. The risk bound matches the optimal scaling in the literature and the constants in our results are explicit and independent of the dimension of the data.

We consider nonparametric prediction with multiple covariates, in particular categorical or functional predictors, or a mixture of both. The method proposed bases on an extension of the Nadaraya-Watson estimator where a kernel function is applied on a linear combination of distance measures each calculated on single covariates, with weights being estimated from the training data. The dependent variable can be categorical (binary or multi-class) or continuous, thus we consider both classification and regression problems. The methodology presented is illustrated and evaluated on artificial and real world data. Particularly it is observed that prediction accuracy can be increased, and irrelevant, noise variables can be identified/removed by "downgrading" the corresponding distance measures in a completely data-driven way.

We study the least square estimator, in the framework of simple linear regression, when the deviance term $\varepsilon$ with respect to the linear model is modeled by a uniform distribution. In particular, we give the law of this estimator, and prove some convergence properties.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司