亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep neural networks are highly performant, but might base their decision on spurious or background features that co-occur with certain classes, which can hurt generalization. To mitigate this issue, the usage of 'model guidance' has gained popularity recently: for this, models are guided to be "right for the right reasons" by regularizing the models' explanations to highlight the right features. Experimental validation of these approaches has thus far however been limited to relatively simple and / or synthetic datasets. To gain a better understanding of which model-guiding approaches actually transfer to more challenging real-world datasets, in this work we conduct an in-depth evaluation across various loss functions, attribution methods, models, and 'guidance depths' on the PASCAL VOC 2007 and MS COCO 2014 datasets, and show that model guidance can sometimes even improve model performance. In this context, we further propose a novel energy loss, show its effectiveness in directing the model to focus on object features. We also show that these gains can be achieved even with a small fraction (e.g. 1%) of bounding box annotations, highlighting the cost effectiveness of this approach. Lastly, we show that this approach can also improve generalization under distribution shifts. Code will be made available.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Better · 變換 · 表示 · MoDELS ·
2023 年 5 月 11 日

Language models with the Transformers structure have shown great performance in natural language processing. However, there still poses problems when fine-tuning pre-trained language models on downstream tasks, such as over-fitting or representation collapse. In this work, we propose HyPe, a simple yet effective fine-tuning technique to alleviate such problems by perturbing hidden representations of Transformers layers. Unlike previous works that only add noise to inputs or parameters, we argue that the hidden representations of Transformers layers convey more diverse and meaningful language information. Therefore, making the Transformers layers more robust to hidden representation perturbations can further benefit the fine-tuning of PLMs en bloc. We conduct extensive experiments and analyses on GLUE and other natural language inference datasets. Results demonstrate that HyPe outperforms vanilla fine-tuning and enhances generalization of hidden representations from different layers. In addition, HyPe acquires negligible computational overheads, and is better than and compatible with previous state-of-the-art fine-tuning techniques.

While machine learning is currently transforming the field of histopathology, the domain lacks a comprehensive evaluation of state-of-the-art models based on essential but complementary quality requirements beyond a mere classification accuracy. In order to fill this gap, we developed a new methodology to extensively evaluate a wide range of classification models, including recent vision transformers, and convolutional neural networks such as: ConvNeXt, ResNet (BiT), Inception, ViT and Swin transformer, with and without supervised or self-supervised pretraining. We thoroughly tested the models on five widely used histopathology datasets containing whole slide images of breast, gastric, and colorectal cancer and developed a novel approach using an image-to-image translation model to assess the robustness of a cancer classification model against stain variations. Further, we extended existing interpretability methods to previously unstudied models and systematically reveal insights of the models' classifications strategies that can be transferred to future model architectures.

Consistency is a key requirement of high-quality translation. It is especially important to adhere to pre-approved terminology and adapt to corrected translations in domain-specific projects. Machine translation (MT) has achieved significant progress in the area of domain adaptation. However, real-time adaptation remains challenging. Large-scale language models (LLMs) have recently shown interesting capabilities of in-context learning, where they learn to replicate certain input-output text generation patterns, without further fine-tuning. By feeding an LLM at inference time with a prompt that consists of a list of translation pairs, it can then simulate the domain and style characteristics. This work aims to investigate how we can utilize in-context learning to improve real-time adaptive MT. Our extensive experiments show promising results at translation time. For example, LLMs can adapt to a set of in-domain sentence pairs and/or terminology while translating a new sentence. We observe that the translation quality with few-shot in-context learning can surpass that of strong encoder-decoder MT systems, especially for high-resource languages. Moreover, we investigate whether we can combine MT from strong encoder-decoder models with fuzzy matches, which can further improve translation quality, especially for less supported languages. We conduct our experiments across five diverse language pairs, namely English-to-Arabic (EN-AR), English-to-Chinese (EN-ZH), English-to-French (EN-FR), English-to-Kinyarwanda (EN-RW), and English-to-Spanish (EN-ES).

Zero-shot sketch-based image retrieval (ZS-SBIR) is challenging due to the cross-domain nature of sketches and photos, as well as the semantic gap between seen and unseen image distributions. Previous methods fine-tune pre-trained models with various side information and learning strategies to learn a compact feature space that (\romannumeral1) is shared between the sketch and photo domains and (\romannumeral2) bridges seen and unseen classes. However, these efforts are inadequate in adapting domains and transferring knowledge from seen to unseen classes. In this paper, we present an effective \emph{``Adapt and Align''} approach to address the key challenges. Specifically, we insert simple and lightweight domain adapters to learn new abstract concepts of the sketch domain and improve cross-domain representation capabilities. Inspired by recent advances in image-text foundation models (\textit{e.g.}, CLIP) on zero-shot scenarios, we explicitly align the learned image embedding with a more semantic text embedding to achieve the desired knowledge transfer from seen to unseen classes. Extensive experiments on three benchmark datasets and two popular backbones demonstrate the superiority of our method in terms of retrieval accuracy and flexibility.

Artificial Intelligence has gained a lot of traction in the recent years, with machine learning notably starting to see more applications across a varied range of fields. One specific machine learning application that is of interest to us is that of software safety and security, especially in the context of parallel programs. The issue of being able to detect concurrency bugs automatically has intrigued programmers for a long time, as the added layer of complexity makes concurrent programs more prone to failure. The development of such automatic detection tools provides considerable benefits to programmers in terms of saving time while debugging, as well as reducing the number of unexpected bugs. We believe machine learning may help achieve this goal by providing additional advantages over current approaches, in terms of both overall tool accuracy as well as programming language flexibility. However, due to the presence of numerous challenges specific to the machine learning approach (correctly labelling a sufficiently large dataset, finding the best model types/architectures and so forth), we have to approach each issue of developing such a tool separately. Therefore, the focus of this project is on comparing both common and recent machine learning approaches. We abstract away the complexity of procuring a labelled dataset of concurrent programs under the form of a synthetic dataset that we define and generate with the scope of simulating real-life (concurrent) programs. We formulate hypotheses about fundamental limits of various machine learning model types which we then validate by running extensive tests on our synthetic dataset. We hope that our findings provide more insight in the advantages and disadvantages of various model types when modelling programs using machine learning, as well as any other related field (e.g. NLP).

Trust has emerged as a key factor in people's interactions with AI-infused systems. Yet, little is known about what models of trust have been used and for what systems: robots, virtual characters, smart vehicles, decision aids, or others. Moreover, there is yet no known standard approach to measuring trust in AI. This scoping review maps out the state of affairs on trust in human-AI interaction (HAII) from the perspectives of models, measures, and methods. Findings suggest that trust is an important and multi-faceted topic of study within HAII contexts. However, most work is under-theorized and under-reported, generally not using established trust models and missing details about methods, especially Wizard of Oz. We offer several targets for systematic review work as well as a research agenda for combining the strengths and addressing the weaknesses of the current literature.

Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.

With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.

Causality knowledge is vital to building robust AI systems. Deep learning models often perform poorly on tasks that require causal reasoning, which is often derived using some form of commonsense knowledge not immediately available in the input but implicitly inferred by humans. Prior work has unraveled spurious observational biases that models fall prey to in the absence of causality. While language representation models preserve contextual knowledge within learned embeddings, they do not factor in causal relationships during training. By blending causal relationships with the input features to an existing model that performs visual cognition tasks (such as scene understanding, video captioning, video question-answering, etc.), better performance can be achieved owing to the insight causal relationships bring about. Recently, several models have been proposed that have tackled the task of mining causal data from either the visual or textual modality. However, there does not exist widespread research that mines causal relationships by juxtaposing the visual and language modalities. While images offer a rich and easy-to-process resource for us to mine causality knowledge from, videos are denser and consist of naturally time-ordered events. Also, textual information offers details that could be implicit in videos. We propose iReason, a framework that infers visual-semantic commonsense knowledge using both videos and natural language captions. Furthermore, iReason's architecture integrates a causal rationalization module to aid the process of interpretability, error analysis and bias detection. We demonstrate the effectiveness of iReason using a two-pronged comparative analysis with language representation learning models (BERT, GPT-2) as well as current state-of-the-art multimodal causality models.

While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.

北京阿比特科技有限公司