亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated learning (FL) has received high interest from researchers and practitioners to train machine learning (ML) models for healthcare. Ensuring the trustworthiness of these models is essential. Especially bias, defined as a disparity in the model's predictive performance across different subgroups, may cause unfairness against specific subgroups, which is an undesired phenomenon for trustworthy ML models. In this research, we address the question to which extent bias occurs in medical FL and how to prevent excessive bias through reward systems. We first evaluate how to measure the contributions of institutions toward predictive performance and bias in cross-silo medical FL with a Shapley value approximation method. In a second step, we design different reward systems incentivizing contributions toward high predictive performance or low bias. We then propose a combined reward system that incentivizes contributions toward both. We evaluate our work using multiple medical chest X-ray datasets focusing on patient subgroups defined by patient sex and age. Our results show that we can successfully measure contributions toward bias, and an integrated reward system successfully incentivizes contributions toward a well-performing model with low bias. While the partitioning of scans only slightly influences the overall bias, institutions with data predominantly from one subgroup introduce a favorable bias for this subgroup. Our results indicate that reward systems, which focus on predictive performance only, can transfer model bias against patients to an institutional level. Our work helps researchers and practitioners design reward systems for FL with well-aligned incentives for trustworthy ML.

相關內容

To mitigate the growing carbon footprint of computing systems, there has been an increasing focus on carbon-aware approaches that seek to align the power usage of IT infrastructure with the availability of clean energy. Unfortunately, research on carbon-aware applications and the required interfaces between computing and energy systems remain complex, due to the scarcity of available testing environments. To this day, almost all new approaches are evaluated on self-implemented simulation testbeds, which leads to repeated development efforts by researchers and low comparability of approaches. In this paper, we present our vision of a co-simulation testbed for carbon-aware applications and systems. We envision a versatile testbed which lets users connect domain-specific simulators for components like renewable power generation, energy storage, and power flow analysis with real software and hardware. By providing extensibility on the one hand and access to state-of-the-art implementations, datasets, and best practices on the other, we hope to accelerate research in carbon-aware computing. In addition, a co-simulation testbed can be useful for development and operations, like in continuous testing. We implemented a first prototype of our idea and welcome the community to contribute to this vision.

Over the past few years, Federated Learning (FL) has become an emerging machine learning technique to tackle data privacy challenges through collaborative training. In the Federated Learning algorithm, the clients submit a locally trained model, and the server aggregates these parameters until convergence. Despite significant efforts that have been made to FL in fields like computer vision, audio, and natural language processing, the FL applications utilizing multimodal data streams remain largely unexplored. It is known that multimodal learning has broad real-world applications in emotion recognition, healthcare, multimedia, and social media, while user privacy persists as a critical concern. Specifically, there are no existing FL benchmarks targeting multimodal applications or related tasks. In order to facilitate the research in multimodal FL, we introduce FedMultimodal, the first FL benchmark for multimodal learning covering five representative multimodal applications from ten commonly used datasets with a total of eight unique modalities. FedMultimodal offers a systematic FL pipeline, enabling end-to-end modeling framework ranging from data partition and feature extraction to FL benchmark algorithms and model evaluation. Unlike existing FL benchmarks, FedMultimodal provides a standardized approach to assess the robustness of FL against three common data corruptions in real-life multimodal applications: missing modalities, missing labels, and erroneous labels. We hope that FedMultimodal can accelerate numerous future research directions, including designing multimodal FL algorithms toward extreme data heterogeneity, robustness multimodal FL, and efficient multimodal FL. The datasets and benchmark results can be accessed at: //github.com/usc-sail/fed-multimodal.

Understanding causal relations is vital in scientific discovery. The process of causal structure learning involves identifying causal graphs from observational data to understand such relations. Usually, a central server performs this task, but sharing data with the server poses privacy risks. Federated learning can solve this problem, but existing solutions for federated causal structure learning make unrealistic assumptions about data and lack convergence guarantees. FedC2SL is a federated constraint-based causal structure learning scheme that learns causal graphs using a federated conditional independence test, which examines conditional independence between two variables under a condition set without collecting raw data from clients. FedC2SL requires weaker and more realistic assumptions about data and offers stronger resistance to data variability among clients. FedPC and FedFCI are the two variants of FedC2SL for causal structure learning in causal sufficiency and causal insufficiency, respectively. The study evaluates FedC2SL using both synthetic datasets and real-world data against existing solutions and finds it demonstrates encouraging performance and strong resilience to data heterogeneity among clients.

This paper considers subject level privacy in the FL setting, where a subject is an individual whose private information is embodied by several data items either confined within a single federation user or distributed across multiple federation users. We propose two new algorithms that enforce subject level DP at each federation user locally. Our first algorithm, called LocalGroupDP, is a straightforward application of group differential privacy in the popular DP-SGD algorithm. Our second algorithm is based on a novel idea of hierarchical gradient averaging (HiGradAvgDP) for subjects participating in a training mini-batch. We also show that user level Local Differential Privacy (LDP) naturally guarantees subject level DP. We observe the problem of horizontal composition of subject level privacy loss in FL - subject level privacy loss incurred at individual users composes across the federation. We formally prove the subject level DP guarantee for our algorithms, and also show their effect on model utility loss. Our empirical evaluation on FEMNIST and Shakespeare datasets shows that LocalGroupDP delivers the best performance among our algorithms. However, its model utility lags behind that of models trained using a DP-SGD based algorithm that provides a weaker item level privacy guarantee. Privacy loss amplification due to subject sampling fractions and horizontal composition remain key challenges for model utility.

With the emergence of privacy leaks in federated learning, secure aggregation protocols that mainly adopt either homomorphic encryption or threshold secret sharing have been widely developed for federated learning to protect the privacy of the local training data of each client. However, these existing protocols suffer from many shortcomings, such as the dependence on a trusted third party, the vulnerability to clients being corrupted, low efficiency, the trade-off between security and fault tolerance, etc. To solve these disadvantages, we propose an efficient and multi-private key secure aggregation scheme for federated learning. Specifically, we skillfully modify the variant ElGamal encryption technique to achieve homomorphic addition operation, which has two important advantages: 1) The server and each client can freely select public and private keys without introducing a trust third party and 2) Compared to the variant ElGamal encryption, the plaintext space is relatively large, which is more suitable for the deep model. Besides, for the high dimensional deep model parameter, we introduce a super-increasing sequence to compress multi-dimensional data into 1-D, which can greatly reduce encryption and decryption times as well as communication for ciphertext transmission. Detailed security analyses show that our proposed scheme achieves the semantic security of both individual local gradients and the aggregated result while achieving optimal robustness in tolerating both client collusion and dropped clients. Extensive simulations demonstrate that the accuracy of our scheme is almost the same as the non-private approach, while the efficiency of our scheme is much better than the state-of-the-art homomorphic encryption-based secure aggregation schemes. More importantly, the efficiency advantages of our scheme will become increasingly prominent as the number of model parameters increases.

Federated learning (FL) as distributed machine learning has gained popularity as privacy-aware Machine Learning (ML) systems have emerged as a technique that prevents privacy leakage by building a global model and by conducting individualized training of decentralized edge clients on their own private data. The existing works, however, employ privacy mechanisms such as Secure Multiparty Computing (SMC), Differential Privacy (DP), etc. Which are immensely susceptible to interference, massive computational overhead, low accuracy, etc. With the increasingly broad deployment of FL systems, it is challenging to ensure fairness and maintain active client participation in FL systems. Very few works ensure reasonably satisfactory performances for the numerous diverse clients and fail to prevent potential bias against particular demographics in FL systems. The current efforts fail to strike a compromise between privacy, fairness, and model performance in FL systems and are vulnerable to a number of additional problems. In this paper, we provide a comprehensive survey stating the basic concepts of FL, the existing privacy challenges, techniques, and relevant works concerning privacy in FL. We also provide an extensive overview of the increasing fairness challenges, existing fairness notions, and the limited works that attempt both privacy and fairness in FL. By comprehensively describing the existing FL systems, we present the potential future directions pertaining to the challenges of privacy-preserving and fairness-aware FL systems.

Federated learning (FL) naturally faces the problem of data heterogeneity in real-world scenarios, but this is often overlooked by studies on FL security and privacy. On the one hand, the effectiveness of backdoor attacks on FL may drop significantly under non-IID scenarios. On the other hand, malicious clients may steal private data through privacy inference attacks. Therefore, it is necessary to have a comprehensive perspective of data heterogeneity, backdoor, and privacy inference. In this paper, we propose a novel privacy inference-empowered stealthy backdoor attack (PI-SBA) scheme for FL under non-IID scenarios. Firstly, a diverse data reconstruction mechanism based on generative adversarial networks (GANs) is proposed to produce a supplementary dataset, which can improve the attacker's local data distribution and support more sophisticated strategies for backdoor attacks. Based on this, we design a source-specified backdoor learning (SSBL) strategy as a demonstration, allowing the adversary to arbitrarily specify which classes are susceptible to the backdoor trigger. Since the PI-SBA has an independent poisoned data synthesis process, it can be integrated into existing backdoor attacks to improve their effectiveness and stealthiness in non-IID scenarios. Extensive experiments based on MNIST, CIFAR10 and Youtube Aligned Face datasets demonstrate that the proposed PI-SBA scheme is effective in non-IID FL and stealthy against state-of-the-art defense methods.

Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.

Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

北京阿比特科技有限公司