We propose a novel estimation approach for a general class of semi-parametric time series models where the conditional expectation is modeled through a parametric function. The proposed class of estimators is based on a Gaussian quasi-likelihood function and it relies on the specification of a parametric pseudo-variance that can contain parametric restrictions with respect to the conditional expectation. The specification of the pseudo-variance and the parametric restrictions follow naturally in observation-driven models with bounds in the support of the observable process, such as count processes and double-bounded time series. We derive the asymptotic properties of the estimators and a validity test for the parameter restrictions. We show that the results remain valid irrespective of the correct specification of the pseudo-variance. The key advantage of the restricted estimators is that they can achieve higher efficiency compared to alternative quasi-likelihood methods that are available in the literature. Furthermore, the testing approach can be used to build specification tests for parametric time series models. We illustrate the practical use of the methodology in a simulation study and two empirical applications featuring integer-valued autoregressive processes, where assumptions on the dispersion of the thinning operator are formally tested, and autoregressions for double-bounded data with application to a realized correlation time series.
A novel spatial autoregressive model for panel data is introduced, which incorporates multilayer networks and accounts for time-varying relationships. Moreover, the proposed approach allows the structural variance to evolve smoothly over time and enables the analysis of shock propagation in terms of time-varying spillover effects. The framework is applied to analyse the dynamics of international relationships among the G7 economies and their impact on stock market returns and volatilities. The findings underscore the substantial impact of cooperative interactions and highlight discernible disparities in network exposure across G7 nations, along with nuanced patterns in direct and indirect spillover effects.
Generative diffusion models have achieved spectacular performance in many areas of generative modeling. While the fundamental ideas behind these models come from non-equilibrium physics, in this paper we show that many aspects of these models can be understood using the tools of equilibrium statistical mechanics. Using this reformulation, we show that generative diffusion models undergo second-order phase transitions corresponding to symmetry breaking phenomena. We argue that this lead to a form of instability that lies at the heart of their generative capabilities and that can be described by a set of mean field critical exponents. We conclude by analyzing recent work connecting diffusion models and associative memory networks in view of the thermodynamic formulations.
We study parallel fault-tolerant quantum computing for families of homological quantum low-density parity-check (LDPC) codes defined on 3-manifolds with constant or almost-constant encoding rate. We derive generic formula for a transversal $T$ gate of color codes on general 3-manifolds, which acts as collective non-Clifford logical CCZ gates on any triplet of logical qubits with their logical-$X$ membranes having a $\mathbb{Z}_2$ triple intersection at a single point. The triple intersection number is a topological invariant, which also arises in the path integral of the emergent higher symmetry operator in a topological quantum field theory: the $\mathbb{Z}_2^3$ gauge theory. Moreover, the transversal $S$ gate of the color code corresponds to a higher-form symmetry supported on a codimension-1 submanifold, giving rise to exponentially many addressable and parallelizable logical CZ gates. We have developed a generic formalism to compute the triple intersection invariants for 3-manifolds and also study the scaling of the Betti number and systoles with volume for various 3-manifolds, which translates to the encoding rate and distance. We further develop three types of LDPC codes supporting such logical gates: (1) A quasi-hyperbolic code from the product of 2D hyperbolic surface and a circle, with almost-constant rate $k/n=O(1/\log(n))$ and $O(\log(n))$ distance; (2) A homological fibre bundle code with $O(1/\log^{\frac{1}{2}}(n))$ rate and $O(\log^{\frac{1}{2}}(n))$ distance; (3) A specific family of 3D hyperbolic codes: the Torelli mapping torus code, constructed from mapping tori of a pseudo-Anosov element in the Torelli subgroup, which has constant rate while the distance scaling is currently unknown. We then show a generic constant-overhead scheme for applying a parallelizable universal gate set with the aid of logical-$X$ measurements.
Deep learning has made significant advances in creating efficient representations of time series data by automatically identifying complex patterns. However, these approaches lack interpretability, as the time series is transformed into a latent vector that is not easily interpretable. On the other hand, Symbolic Aggregate approximation (SAX) methods allow the creation of symbolic representations that can be interpreted but do not capture complex patterns effectively. In this work, we propose a set of requirements for a neural representation of univariate time series to be interpretable. We propose a new unsupervised neural architecture that meets these requirements. The proposed model produces consistent, discrete, interpretable, and visualizable representations. The model is learned independently of any downstream tasks in an unsupervised setting to ensure robustness. As a demonstration of the effectiveness of the proposed model, we propose experiments on classification tasks using UCR archive datasets. The obtained results are extensively compared to other interpretable models and state-of-the-art neural representation learning models. The experiments show that the proposed model yields, on average better results than other interpretable approaches on multiple datasets. We also present qualitative experiments to asses the interpretability of the approach.
This paper studies the semi-supervised novelty detection problem where a set of "typical" measurements is available to the researcher. Motivated by recent advances in multiple testing and conformal inference, we propose AdaDetect, a flexible method that is able to wrap around any probabilistic classification algorithm and control the false discovery rate (FDR) on detected novelties in finite samples without any distributional assumption other than exchangeability. In contrast to classical FDR-controlling procedures that are often committed to a pre-specified p-value function, AdaDetect learns the transformation in a data-adaptive manner to focus the power on the directions that distinguish between inliers and outliers. Inspired by the multiple testing literature, we further propose variants of AdaDetect that are adaptive to the proportion of nulls while maintaining the finite-sample FDR control. The methods are illustrated on synthetic datasets and real-world datasets, including an application in astrophysics.
In this paper, we propose the novel p-branch-and-bound method for solving two-stage stochastic programming problems whose deterministic equivalents are represented by non-convex mixed-integer quadratically constrained quadratic programming (MIQCQP) models. The precision of the solution generated by the p-branch-and-bound method can be arbitrarily adjusted by altering the value of the precision factor p. The proposed method combines two key techniques. The first one, named p-Lagrangian decomposition, generates a mixed-integer relaxation of a dual problem with a separable structure for a primal non-convex MIQCQP problem. The second one is a version of the classical dual decomposition approach that is applied to solve the Lagrangian dual problem and ensures that integrality and non-anticipativity conditions are met in the optimal solution. The p-branch-and-bound method's efficiency has been tested on randomly generated instances and demonstrated superior performance over commercial solver Gurobi. This paper also presents a comparative analysis of the p-branch-and-bound method efficiency considering two alternative solution methods for the dual problems as a subroutine. These are the proximal bundle method and Frank-Wolfe progressive hedging. The latter algorithm relies on the interpolation of linearisation steps similar to those taken in the Frank-Wolfe method as an inner loop in the classic progressive hedging.
Discovery of mathematical descriptors of physical phenomena from observational and simulated data, as opposed to from the first principles, is a rapidly evolving research area. Two factors, time-dependence of the inputs and hidden translation invariance, are known to complicate this task. To ameliorate these challenges, we combine Lagrangian dynamic mode decomposition with a locally time-invariant approximation of the Koopman operator. The former component of our method yields the best linear estimator of the system's dynamics, while the latter deals with the system's nonlinearity and non-autonomous behavior. We provide theoretical estimators (bounds) of prediction accuracy and perturbation error to guide the selection of both rank truncation and temporal discretization. We demonstrate the performance of our approach on several non-autonomous problems, including two-dimensional Navier-Stokes equations.
We introduce a nonlinear stochastic model reduction technique for high-dimensional stochastic dynamical systems that have a low-dimensional invariant effective manifold with slow dynamics, and high-dimensional, large fast modes. Given only access to a black box simulator from which short bursts of simulation can be obtained, we design an algorithm that outputs an estimate of the invariant manifold, a process of the effective stochastic dynamics on it, which has averaged out the fast modes, and a simulator thereof. This simulator is efficient in that it exploits of the low dimension of the invariant manifold, and takes time steps of size dependent on the regularity of the effective process, and therefore typically much larger than that of the original simulator, which had to resolve the fast modes. The algorithm and the estimation can be performed on-the-fly, leading to efficient exploration of the effective state space, without losing consistency with the underlying dynamics. This construction enables fast and efficient simulation of paths of the effective dynamics, together with estimation of crucial features and observables of such dynamics, including the stationary distribution, identification of metastable states, and residence times and transition rates between them.
This paper presents a new algorithm for generating random inverse-Wishart matrices that directly generates the Cholesky factor of the matrix without computing the factorization. Whenever parameterized in terms of a precision matrix $\Omega=\Sigma^{-1}$, or its Cholesky factor, instead of a covariance matrix $\Sigma$, the new algorithm is more efficient than the current standard algorithm.
We study scalable machine learning models for full event reconstruction in high-energy electron-positron collisions based on a highly granular detector simulation. Particle-flow (PF) reconstruction can be formulated as a supervised learning task using tracks and calorimeter clusters or hits. We compare a graph neural network and kernel-based transformer and demonstrate that both avoid quadratic memory allocation and computational cost while achieving realistic PF reconstruction. We show that hyperparameter tuning on a supercomputer significantly enhances the physics performance of the models, improving the jet transverse momentum resolution by up to 50% compared to the baseline. The resulting model is highly portable across hardware processors, supporting Nvidia, AMD, and Intel Habana cards. Finally, we demonstrate that the model can be trained on highly granular inputs consisting of tracks and calorimeter hits, resulting in a competitive physics performance with the baseline. Datasets and software to reproduce the studies are published following the findable, accessible, interoperable, and reusable (FAIR) principles.