亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Accurate short-term predictions of phase-resolved water wave conditions are crucial for decision-making in ocean engineering. However, the initialization of remote-sensing-based wave prediction models first requires a reconstruction of wave surfaces from sparse measurements like radar. Existing reconstruction methods either rely on computationally intensive optimization procedures or simplistic modelling assumptions that compromise the real-time capability or accuracy of the subsequent prediction process. We therefore address these issues by proposing a novel approach for phase-resolved wave surface reconstruction using neural networks based on the U-Net and Fourier neural operator (FNO) architectures. Our approach utilizes synthetic yet highly realistic training data on uniform one-dimensional grids, that is generated by the high-order spectral method for wave simulation and a geometric radar modelling approach. The investigation reveals that both models deliver accurate wave reconstruction results and show good generalization for different sea states when trained with spatio-temporal radar data containing multiple historic radar snapshots in each input. Notably, the FNO demonstrates superior performance in handling the data structure imposed by wave physics due to its global approach to learn the mapping between input and output in Fourier space.

相關內容

 Surface 是微軟公司( )旗下一系列使用 Windows 10(早期為 Windows 8.X)操作系統的電腦產品,目前有 Surface、Surface Pro 和 Surface Book 三個系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由時任微軟 CEO 史蒂夫·鮑爾默發布于在洛杉磯舉行的記者會,2012 年 10 月 26 日上市銷售。

Creating a dataset for training supervised machine learning algorithms can be a demanding task. This is especially true for medical image segmentation since one or more specialists are usually required for image annotation, and creating ground truth labels for just a single image can take up to several hours. In addition, it is paramount that the annotated samples represent well the different conditions that might affect the imaged tissues as well as possible changes in the image acquisition process. This can only be achieved by considering samples that are typical in the dataset as well as atypical, or even outlier, samples. We introduce a new sampling methodology for selecting relevant images from a large dataset in a way that evenly considers both prototypical as well as atypical samples. The methodology involves the generation of a uniform grid from a feature space representing the samples, which is then used for randomly drawing relevant images. The selected images provide a uniform covering of the original dataset, and thus define a heterogeneous set of images that can be annotated and used for training supervised segmentation algorithms. We provide a case example by creating a dataset containing a representative set of blood vessel microscopy images selected from a larger dataset containing thousands of images. The dataset, which we call VessMAP, is being made available online to aid the development of new blood vessel segmentation algorithms.

We introduce a general theoretical framework, designed for the study of gradient optimisation of deep neural networks, that encompasses ubiquitous architecture choices including batch normalisation, weight normalisation and skip connections. Our framework determines the curvature and regularity properties of multilayer loss landscapes in terms of their constituent layers, thereby elucidating the roles played by normalisation layers and skip connections in globalising these properties. We then demonstrate the utility of this framework in two respects. First, we give the only proof of which we are aware that a class of deep neural networks can be trained using gradient descent to global optima even when such optima only exist at infinity, as is the case for the cross-entropy cost. Second, we identify a novel causal mechanism by which skip connections accelerate training, which we verify predictively with ResNets on MNIST, CIFAR10, CIFAR100 and ImageNet.

We consider the problem of using SciML to predict solutions of high Mach fluid flows over irregular geometries. In this setting, data is limited, and so it is desirable for models to perform well in the low-data setting. We show that Neural Basis Functions (NBF), which learns a basis of behavior modes from the data and then uses this basis to make predictions, is more effective than a basis-unaware baseline model. In addition, we identify continuing challenges in the space of predicting solutions for this type of problem.

Guided ultrasonic wave based structural health monitoring has been of interest over decades. However, the influence of pre-stress states on the propagation of Lamb waves in thin-walled structures is not fully covered, yet. So far experimental work presented in the literature only focuses on a few individual frequencies, which does not allow a comprehensive verification of the numerous numerical investigations. Furthermore, most work is based on the strain-energy density function by Murnaghan. To validate the common modeling approach and to investigate the suitability of other non-linear strain-energy density functions an extensive experimental and numerical investigation covering a large frequency range is presented here. The numerical simulation comprises the use of the Neo-Hooke as well as the Murnaghan material model. It is found that these two material models show qualitatively similar results. Furthermore, the comparison with the experimental results reveals, that the Neo-Hooke material model reproduces the effect of pre-stress on the difference in the Lamb wave phase velocity very well in most cases. For the $A_0$ wave mode at higher frequencies, however, the sign of this difference is only correctly predicted by the Murnaghan model. In contrast to this the Murnaghan material model fails to predict the sign change for the $S_0$ wave mode.

Due to their intrinsic capabilities on parallel signal processing, optical neural networks (ONNs) have attracted extensive interests recently as a potential alternative to electronic artificial neural networks (ANNs) with reduced power consumption and low latency. Preliminary confirmation of the parallelism in optical computing has been widely done by applying the technology of wavelength division multiplexing (WDM) in the linear transformation part of neural networks. However, inter-channel crosstalk has obstructed WDM technologies to be deployed in nonlinear activation in ONNs. Here, we propose a universal WDM structure called multiplexed neuron sets (MNS) which apply WDM technologies to optical neurons and enable ONNs to be further compressed. A corresponding back-propagation (BP) training algorithm is proposed to alleviate or even cancel the influence of inter-channel crosstalk on MNS-based WDM-ONNs. For simplicity, semiconductor optical amplifiers (SOAs) are employed as an example of MNS to construct a WDM-ONN trained with the new algorithm. The result shows that the combination of MNS and the corresponding BP training algorithm significantly downsize the system and improve the energy efficiency to tens of times while giving similar performance to traditional ONNs.

We develop a novel discontinuous Galerkin method for solving the rotating thermal shallow water equations (TRSW) on a curvilinear mesh. Our method is provably entropy stable, conserves mass, buoyancy and vorticity, while also semi-discretely conserving energy. This is achieved by using novel numerical fluxes and splitting the pressure and convection operators. We implement our method on a cubed sphere mesh and numerically verify our theoretical results. Our experiments demonstrate the robustness of the method for a regime of well developed turbulence, where it can be run stably without any dissipation. The entropy stable fluxes are sufficient to control the grid scale noise generated by geostrophic turbulence, eliminating the need for artificial stabilization.

The classification of galaxies as spirals or ellipticals is a crucial task in understanding their formation and evolution. With the arrival of large-scale astronomical surveys, such as the Sloan Digital Sky Survey (SDSS), astronomers now have access to images of a vast number of galaxies. However, the visual inspection of these images is an impossible task for humans due to the sheer number of galaxies to be analyzed. To solve this problem, the Galaxy Zoo project was created to engage thousands of citizen scientists to classify the galaxies based on their visual features. In this paper, we present a machine learning model for galaxy classification using numerical data from the Galaxy Zoo[5] project. Our model utilizes a convolutional neural network architecture to extract features from galaxy images and classify them into spirals or ellipticals. We demonstrate the effectiveness of our model by comparing its performance with that of human classifiers using a subset of the Galaxy Zoo dataset. Our results show that our model achieves high accuracy in classifying galaxies and has the potential to significantly enhance our understanding of the formation and evolution of galaxies.

We analyze the wave equation in mixed form, with periodic and/or Dirichlet homogeneous boundary conditions, and nonconstant coefficients that depend on the spatial variable. For the discretization, the weak form of the second equation is replaced by a strong form, written in terms of a projection operator. The system of equations is discretized with B-splines forming a De Rham complex along with suitable commutative projectors for the approximation of the second equation. The discrete scheme is energy conservative when discretized in time with a conservative method such as Crank-Nicolson. We propose a convergence analysis of the method to study the dependence with respect to the mesh size $h$, with focus on the consistency error. Numerical results show optimal convergence of the error in energy norm, and a relative error in energy conservation for long-time simulations of the order of machine precision.

This work introduces a novel cause-effect relation in Markov decision processes using the probability-raising principle. Initially, sets of states as causes and effects are considered, which is subsequently extended to regular path properties as effects and then as causes. The paper lays the mathematical foundations and analyzes the algorithmic properties of these cause-effect relations. This includes algorithms for checking cause conditions given an effect and deciding the existence of probability-raising causes. As the definition allows for sub-optimal coverage properties, quality measures for causes inspired by concepts of statistical analysis are studied. These include recall, coverage ratio and f-score. The computational complexity for finding optimal causes with respect to these measures is analyzed.

Positron Emission Tomography (PET) enables functional imaging of deep brain structures, but the bulk and weight of current systems preclude their use during many natural human activities, such as locomotion. The proposed long-term solution is to construct a robotic system that can support an imaging system surrounding the subject's head, and then move the system to accommodate natural motion. This requires a system to measure the motion of the head with respect to the imaging ring, for use by both the robotic system and the image reconstruction software. We report here the design, calibration, and experimental evaluation of a parallel string encoder mechanism for sensing this motion. Our results indicate that with kinematic calibration, the measurement system can achieve accuracy within 0.5mm, especially for small motions.

北京阿比特科技有限公司