亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper develops probabilistic PV forecasters by taking advantage of recent breakthroughs in deep learning. It tailored forecasting tool, named encoder-decoder, is implemented to compute intraday multi-output PV quantiles forecasts to efficiently capture the time correlation. The models are trained using quantile regression, a non-parametric approach that assumes no prior knowledge of the probabilistic forecasting distribution. The case study is composed of PV production monitored on-site at the University of Li\`ege (ULi\`ege), Belgium. The weather forecasts from the regional climate model provided by the Laboratory of Climatology are used as inputs of the deep learning models. The forecast quality is quantitatively assessed by the continuous ranked probability and interval scores. The results indicate this architecture improves the forecast quality and is computationally efficient to be incorporated in an intraday decision-making tool for robust optimization.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 統計量 · 可約的 · Machine Learning · Performer ·
2021 年 7 月 24 日

In this proof-of-concept work, we evaluate the performance of multiple machine-learning methods as statistical emulators for use in the analysis of agent-based models (ABMs). Analysing ABM outputs can be challenging, as the relationships between input parameters can be non-linear or even chaotic even in relatively simple models, and each model run can require significant CPU time. Statistical emulation, in which a statistical model of the ABM is constructed to facilitate detailed model analyses, has been proposed as an alternative to computationally costly Monte Carlo methods. Here we compare multiple machine-learning methods for ABM emulation in order to determine the approaches best suited to emulating the complex behaviour of ABMs. Our results suggest that, in most scenarios, artificial neural networks (ANNs) and gradient-boosted trees outperform Gaussian process emulators, currently the most commonly used method for the emulation of complex computational models. ANNs produced the most accurate model replications in scenarios with high numbers of model runs, although training times were longer than the other methods. We propose that agent-based modelling would benefit from using machine-learning methods for emulation, as this can facilitate more robust sensitivity analyses for the models while also reducing CPU time consumption when calibrating and analysing the simulation.

We consider the problem of automated anomaly detection for building level heat load time series. An anomaly detection model must be applicable to a diverse group of buildings and provide robust results on heat load time series with low signal-to-noise ratios, several seasonalities, and significant exogenous effects. We propose to employ a probabilistic forecast combination approach based on an ensemble of deterministic forecasts in an anomaly detection scheme that classifies observed values based on their probability under a predictive distribution. We show empirically that forecast based anomaly detection provides improved accuracy when employing a forecast combination approach.

Time-series forecasting plays an important role in many domains. Boosted by the advances in Deep Learning algorithms, it has for instance been used to predict wind power for eolic energy production, stock market fluctuations, or motor overheating. In some of these tasks, we are interested in predicting accurately some particular moments which often are underrepresented in the dataset, resulting in a problem known as imbalanced regression. In the literature, while recognized as a challenging problem, limited attention has been devoted on how to handle the problem in a practical setting. In this paper, we put forward a general approach to analyze time-series forecasting problems focusing on those underrepresented moments to reduce imbalances. Our approach has been developed based on a case study in a large industrial company, which we use to exemplify the approach.

Demand forecasting is a central component of the replenishment process for retailers, as it provides crucial input for subsequent decision making like ordering processes. In contrast to point estimates, such as the conditional mean of the underlying probability distribution, or confidence intervals, forecasting complete probability density functions allows to investigate the impact on operational metrics, which are important to define the business strategy, over the full range of the expected demand. Whereas metrics evaluating point estimates are widely used, methods for assessing the accuracy of predicted distributions are rare, and this work proposes new techniques for both qualitative and quantitative evaluation methods. Using the supervised machine learning method "Cyclic Boosting", complete individual probability density functions can be predicted such that each prediction is fully explainable. This is of particular importance for practitioners, as it allows to avoid "black-box" models and understand the contributing factors for each individual prediction. Another crucial aspect in terms of both explainability and generalizability of demand forecasting methods is the limitation of the influence of temporal confounding, which is prevalent in most state of the art approaches.

For person re-identification, existing deep networks often focus on representation learning. However, without transfer learning, the learned model is fixed as is, which is not adaptable for handling various unseen scenarios. In this paper, beyond representation learning, we consider how to formulate person image matching directly in deep feature maps. We treat image matching as finding local correspondences in feature maps, and construct query-adaptive convolution kernels on the fly to achieve local matching. In this way, the matching process and results are interpretable, and this explicit matching is more generalizable than representation features to unseen scenarios, such as unknown misalignments, pose or viewpoint changes. To facilitate end-to-end training of this architecture, we further build a class memory module to cache feature maps of the most recent samples of each class, so as to compute image matching losses for metric learning. Through direct cross-dataset evaluation, the proposed Query-Adaptive Convolution (QAConv) method gains large improvements over popular learning methods (about 10\%+ mAP), and achieves comparable results to many transfer learning methods. Besides, a model-free temporal cooccurrence based score weighting method called TLift is proposed, which improves the performance to a further extent, achieving state-of-the-art results in cross-dataset person re-identification. Code is available at \url{//github.com/ShengcaiLiao/QAConv}.

Modeling multivariate time series has long been a subject that has attracted researchers from a diverse range of fields including economics, finance, and traffic. A basic assumption behind multivariate time series forecasting is that its variables depend on one another but, upon looking closely, it is fair to say that existing methods fail to fully exploit latent spatial dependencies between pairs of variables. In recent years, meanwhile, graph neural networks (GNNs) have shown high capability in handling relational dependencies. GNNs require well-defined graph structures for information propagation which means they cannot be applied directly for multivariate time series where the dependencies are not known in advance. In this paper, we propose a general graph neural network framework designed specifically for multivariate time series data. Our approach automatically extracts the uni-directed relations among variables through a graph learning module, into which external knowledge like variable attributes can be easily integrated. A novel mix-hop propagation layer and a dilated inception layer are further proposed to capture the spatial and temporal dependencies within the time series. The graph learning, graph convolution, and temporal convolution modules are jointly learned in an end-to-end framework. Experimental results show that our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets and achieves on-par performance with other approaches on two traffic datasets which provide extra structural information.

Text to Image Synthesis refers to the process of automatic generation of a photo-realistic image starting from a given text and is revolutionizing many real-world applications. In order to perform such process it is necessary to exploit datasets containing captioned images, meaning that each image is associated with one (or more) captions describing it. Despite the abundance of uncaptioned images datasets, the number of captioned datasets is limited. To address this issue, in this paper we propose an approach capable of generating images starting from a given text using conditional GANs trained on uncaptioned images dataset. In particular, uncaptioned images are fed to an Image Captioning Module to generate the descriptions. Then, the GAN Module is trained on both the input image and the machine-generated caption. To evaluate the results, the performance of our solution is compared with the results obtained by the unconditional GAN. For the experiments, we chose to use the uncaptioned dataset LSUN bedroom. The results obtained in our study are preliminary but still promising.

Deep Learning is applied to energy markets to predict extreme loads observed in energy grids. Forecasting energy loads and prices is challenging due to sharp peaks and troughs that arise due to supply and demand fluctuations from intraday system constraints. We propose deep spatio-temporal models and extreme value theory (EVT) to capture theses effects and in particular the tail behavior of load spikes. Deep LSTM architectures with ReLU and $\tanh$ activation functions can model trends and temporal dependencies while EVT captures highly volatile load spikes above a pre-specified threshold. To illustrate our methodology, we use hourly price and demand data from 4719 nodes of the PJM interconnection, and we construct a deep predictor. We show that DL-EVT outperforms traditional Fourier time series methods, both in-and out-of-sample, by capturing the observed nonlinearities in prices. Finally, we conclude with directions for future research.

Efficient exploration remains a major challenge for reinforcement learning. One reason is that the variability of the returns often depends on the current state and action, and is therefore heteroscedastic. Classical exploration strategies such as upper confidence bound algorithms and Thompson sampling fail to appropriately account for heteroscedasticity, even in the bandit setting. Motivated by recent findings that address this issue in bandits, we propose to use Information-Directed Sampling (IDS) for exploration in reinforcement learning. As our main contribution, we build on recent advances in distributional reinforcement learning and propose a novel, tractable approximation of IDS for deep Q-learning. The resulting exploration strategy explicitly accounts for both parametric uncertainty and heteroscedastic observation noise. We evaluate our method on Atari games and demonstrate a significant improvement over alternative approaches.

Multivariate time series forecasting is extensively studied throughout the years with ubiquitous applications in areas such as finance, traffic, environment, etc. Still, concerns have been raised on traditional methods for incapable of modeling complex patterns or dependencies lying in real word data. To address such concerns, various deep learning models, mainly Recurrent Neural Network (RNN) based methods, are proposed. Nevertheless, capturing extremely long-term patterns while effectively incorporating information from other variables remains a challenge for time-series forecasting. Furthermore, lack-of-explainability remains one serious drawback for deep neural network models. Inspired by Memory Network proposed for solving the question-answering task, we propose a deep learning based model named Memory Time-series network (MTNet) for time series forecasting. MTNet consists of a large memory component, three separate encoders, and an autoregressive component to train jointly. Additionally, the attention mechanism designed enable MTNet to be highly interpretable. We can easily tell which part of the historic data is referenced the most.

北京阿比特科技有限公司