In the rapidly advancing technological landscape, smartwatches have materialized as multifunctional devices integral to our daily routines. Smartwatches store a substantial amount of personal information, potentially serving as repositories of digital evidence. Thus, digital forensic researchers have devoted considerable effort to exploring smartwatch forensic techniques. However, it has been observed that prior studies have primarily treated smartwatches as mere storage mediums for digital evidence, neglecting their potential role in criminal activities. This paper presents the information leakage perpetrated through smartwatches. We represent crime scenarios in an environment where smartphones are not available, considering that the perception that smartphones can be used as tools for criminal behavior prevails in many organizations, while the potential of similar-use smartwatches is often overlooked. We detail mechanisms for information leakage via file transfer and camera control using smartwatches. Additionally, we present methods to investigate each crime incident through smartwatch forensics. Finally, we describe the limitations of post-incident responses and propose proactive measures to prepare for potential crimes involving smartwatches. Keywords: Information Leakage, Smartwatch Forensics, Android Forensics, Mobile Device Management, Security Policy
This work investigates an application-driven co-design problem where the motion and motors of a six degrees of freedom robotic manipulator are optimized simultaneously, and the application is characterized by a set of tasks. Unlike the state-of-the-art which selects motors from a product catalogue and performs co-design for a single task, this work designs the motor geometry as well as motion for a specific application. Contributions are made towards solving the proposed co-design problem in a computationally-efficient manner. First, a two-step process is proposed, where multiple motor designs are identified by optimizing motions and motors for multiple tasks one by one, and then are reconciled to determine the final motor design. Second, magnetic equivalent circuit modeling is exploited to establish the analytic mapping from motor design parameters to dynamic models and objective functions to facilitate the subsequent differentiable simulation. Third, a direct-collocation-based differentiable simulator of motor and robotic arm dynamics is developed to balance the computational complexity and numerical stability. Simulation verifies that higher performance for a specific application can be achieved with the multi-task method, compared to several benchmark co-design methods.
The problem of managing multi-service applications on top of Cloud-Edge networks in a QoS-aware manner has been thoroughly studied in recent years from a decision-making perspective. However, only a few studies addressed the problem of actively enforcing such decisions while orchestrating multi-service applications and considering infrastructure and application variations. In this article, we propose a next-gen orchestrator prototype based on Docker to achieve the continuous and QoS-compliant management of multiservice applications on top of geographically distributed Cloud-Edge resources, in continuity with CI/CD pipelines and infrastructure monitoring tools. Finally, we assess our proposal over a geographically distributed testbed across Italy.
Tensors are ubiquitous in science and engineering and tensor factorization approaches have become important tools for the characterization of higher order structure. Factorizations includes the outer-product rank Canonical Polyadic Decomposition (CPD) as well as the multi-linear rank Tucker decomposition in which the Block-Term Decomposition (BTD) is a structured intermediate interpolating between these two representations. Whereas CPD, Tucker, and BTD have traditionally relied on maximum-likelihood estimation, Bayesian inference has been use to form probabilistic CPD and Tucker. We propose, an efficient variational Bayesian probabilistic BTD, which uses the von-Mises Fisher matrix distribution to impose orthogonality in the multi-linear Tucker parts forming the BTD. On synthetic and two real datasets, we highlight the Bayesian inference procedure and demonstrate using the proposed pBTD on noisy data and for model order quantification. We find that the probabilistic BTD can quantify suitable multi-linear structures providing a means for robust inference of patterns in multi-linear data.
This article puts the spotlight on the receiver front-end (RFE), an integral part of any wireless device that information theory typically idealizes into a mere addition of noise. While this idealization was sound in the past, as operating frequencies, bandwidths, and antenna counts rise, a soaring amount of power is required for the RFE to behave accordingly. Containing this surge in power expenditure exposes a harsher behavior on the part of the RFE (more noise, nonlinearities, and coarse quantization), setting up a tradeoff between the spectral efficiency under such nonidealities and the efficiency in the use of energy by the RFE. With the urge for radically better power consumptions and energy efficiencies in 6G, this emerges as an issue on which information theory can cast light at a fundamental level. More broadly, this article advocates the interest of having information theory embrace the device power consumption in its analyses. In turn, this calls for new models and abstractions such as the ones herein put together for the RFE, and for a more holistic perspective.
We address the challenges associated with deploying neural networks on CPUs, with a particular focus on minimizing inference time while maintaining accuracy. Our novel approach is to use the dataflow (i.e., computation order) of a neural network to explore data reuse opportunities using heuristic-guided analysis and a code generation framework, which enables exploration of various Single Instruction, Multiple Data (SIMD) implementations to achieve optimized neural network execution. Our results demonstrate that the dataflow that keeps outputs in SIMD registers while also maximizing both input and weight reuse consistently yields the best performance for a wide variety of inference workloads, achieving up to 3x speedup for 8-bit neural networks, and up to 4.8x speedup for binary neural networks, respectively, over the optimized implementations of neural networks today.
Deep neural network based recommendation systems have achieved great success as information filtering techniques in recent years. However, since model training from scratch requires sufficient data, deep learning-based recommendation methods still face the bottlenecks of insufficient data and computational inefficiency. Meta-learning, as an emerging paradigm that learns to improve the learning efficiency and generalization ability of algorithms, has shown its strength in tackling the data sparsity issue. Recently, a growing number of studies on deep meta-learning based recommenddation systems have emerged for improving the performance under recommendation scenarios where available data is limited, e.g. user cold-start and item cold-start. Therefore, this survey provides a timely and comprehensive overview of current deep meta-learning based recommendation methods. Specifically, we propose a taxonomy to discuss existing methods according to recommendation scenarios, meta-learning techniques, and meta-knowledge representations, which could provide the design space for meta-learning based recommendation methods. For each recommendation scenario, we further discuss technical details about how existing methods apply meta-learning to improve the generalization ability of recommendation models. Finally, we also point out several limitations in current research and highlight some promising directions for future research in this area.
With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.
Graph Convolutional Network (GCN) has been widely applied in transportation demand prediction due to its excellent ability to capture non-Euclidean spatial dependence among station-level or regional transportation demands. However, in most of the existing research, the graph convolution was implemented on a heuristically generated adjacency matrix, which could neither reflect the real spatial relationships of stations accurately, nor capture the multi-level spatial dependence of demands adaptively. To cope with the above problems, this paper provides a novel graph convolutional network for transportation demand prediction. Firstly, a novel graph convolution architecture is proposed, which has different adjacency matrices in different layers and all the adjacency matrices are self-learned during the training process. Secondly, a layer-wise coupling mechanism is provided, which associates the upper-level adjacency matrix with the lower-level one. It also reduces the scale of parameters in our model. Lastly, a unitary network is constructed to give the final prediction result by integrating the hidden spatial states with gated recurrent unit, which could capture the multi-level spatial dependence and temporal dynamics simultaneously. Experiments have been conducted on two real-world datasets, NYC Citi Bike and NYC Taxi, and the results demonstrate the superiority of our model over the state-of-the-art ones.
Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.