亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Traditional 3D content creation tools empower users to bring their imagination to life by giving them direct control over a scene's geometry, appearance, motion, and camera path. Creating computer-generated videos, however, is a tedious manual process, which can be automated by emerging text-to-video diffusion models. Despite great promise, video diffusion models are difficult to control, hindering a user to apply their own creativity rather than amplifying it. To address this challenge, we present a novel approach that combines the controllability of dynamic 3D meshes with the expressivity and editability of emerging diffusion models. For this purpose, our approach takes an animated, low-fidelity rendered mesh as input and injects the ground truth correspondence information obtained from the dynamic mesh into various stages of a pre-trained text-to-image generation model to output high-quality and temporally consistent frames. We demonstrate our approach on various examples where motion can be obtained by animating rigged assets or changing the camera path.

相關內容

We introduce Lumiere -- a text-to-video diffusion model designed for synthesizing videos that portray realistic, diverse and coherent motion -- a pivotal challenge in video synthesis. To this end, we introduce a Space-Time U-Net architecture that generates the entire temporal duration of the video at once, through a single pass in the model. This is in contrast to existing video models which synthesize distant keyframes followed by temporal super-resolution -- an approach that inherently makes global temporal consistency difficult to achieve. By deploying both spatial and (importantly) temporal down- and up-sampling and leveraging a pre-trained text-to-image diffusion model, our model learns to directly generate a full-frame-rate, low-resolution video by processing it in multiple space-time scales. We demonstrate state-of-the-art text-to-video generation results, and show that our design easily facilitates a wide range of content creation tasks and video editing applications, including image-to-video, video inpainting, and stylized generation.

Despite remarkable success in diverse web-based applications, Graph Neural Networks(GNNs) inherit and further exacerbate historical discrimination and social stereotypes, which critically hinder their deployments in high-stake domains such as online clinical diagnosis, financial crediting, etc. However, current fairness research that primarily craft on i.i.d data, cannot be trivially replicated to non-i.i.d. graph structures with topological dependence among samples. Existing fair graph learning typically favors pairwise constraints to achieve fairness but fails to cast off dimensional limitations and generalize them into multiple sensitive attributes; besides, most studies focus on in-processing techniques to enforce and calibrate fairness, constructing a model-agnostic debiasing GNN framework at the pre-processing stage to prevent downstream misuses and improve training reliability is still largely under-explored. Furthermore, previous work on GNNs tend to enhance either fairness or privacy individually but few probe into their interplays. In this paper, we propose a novel model-agnostic debiasing framework named MAPPING (\underline{M}asking \underline{A}nd \underline{P}runing and Message-\underline{P}assing train\underline{ING}) for fair node classification, in which we adopt the distance covariance($dCov$)-based fairness constraints to simultaneously reduce feature and topology biases in arbitrary dimensions, and combine them with adversarial debiasing to confine the risks of attribute inference attacks. Experiments on real-world datasets with different GNN variants demonstrate the effectiveness and flexibility of MAPPING. Our results show that MAPPING can achieve better trade-offs between utility and fairness, and mitigate privacy risks of sensitive information leakage.

Generative AI models face the challenge of hallucinations that can undermine users' trust in such systems. We approach the problem of conversational information seeking as a two-step process, where relevant passages in a corpus are identified first and then summarized into a final system response. This way we can automatically assess if the answer to the user's question is present in the corpus. Specifically, our proposed method employs a sentence-level classifier to detect if the answer is present, then aggregates these predictions on the passage level, and eventually across the top-ranked passages to arrive at a final answerability estimate. For training and evaluation, we develop a dataset based on the TREC CAsT benchmark that includes answerability labels on the sentence, passage, and ranking levels. We demonstrate that our proposed method represents a strong baseline and outperforms a state-of-the-art LLM on the answerability prediction task.

Recommender systems have been widely deployed in various real-world applications to help users identify content of interest from massive amounts of information. Traditional recommender systems work by collecting user-item interaction data in a cloud-based data center and training a centralized model to perform the recommendation service. However, such cloud-based recommender systems (CloudRSs) inevitably suffer from excessive resource consumption, response latency, as well as privacy and security risks concerning both data and models. Recently, driven by the advances in storage, communication, and computation capabilities of edge devices, there has been a shift of focus from CloudRSs to on-device recommender systems (DeviceRSs), which leverage the capabilities of edge devices to minimize centralized data storage requirements, reduce the response latency caused by communication overheads, and enhance user privacy and security by localizing data processing and model training. Despite the rapid rise of DeviceRSs, there is a clear absence of timely literature reviews that systematically introduce, categorize and contrast these methods. To bridge this gap, we aim to provide a comprehensive survey of DeviceRSs, covering three main aspects: (1) the deployment and inference of DeviceRSs (2) the training and update of DeviceRSs (3) the security and privacy of DeviceRSs. Furthermore, we provide a fine-grained and systematic taxonomy of the methods involved in each aspect, followed by a discussion regarding challenges and future research directions. This is the first comprehensive survey on DeviceRSs that covers a spectrum of tasks to fit various needs. We believe this survey will help readers effectively grasp the current research status in this field, equip them with relevant technical foundations, and stimulate new research ideas for developing DeviceRSs.

Graphical User Interface (GUI) agents are designed to automate complex tasks on digital devices, such as smartphones and desktops. Most existing GUI agents interact with the environment through extracted structured data, which can be notably lengthy (e.g., HTML) and occasionally inaccessible (e.g., on desktops). To alleviate this issue, we propose a visual GUI agent -- SeeClick, which only relies on screenshots for task automation. In our preliminary study, we have discovered a key challenge in developing visual GUI agents: GUI grounding -- the capacity to accurately locate screen elements based on instructions. To tackle this challenge, we propose to enhance SeeClick with GUI grounding pre-training and devise a method to automate the curation of GUI grounding data. Along with the efforts above, we have also created ScreenSpot, the first realistic GUI grounding dataset that encompasses mobile, desktop, and web environments. After pre-training, SeeClick demonstrates significant improvement in ScreenSpot over various baselines. Moreover, comprehensive evaluations on three widely used benchmarks consistently support our finding that advancements in GUI grounding directly correlate with enhanced performance in downstream GUI agent tasks. The model, data and code are available at //github.com/njucckevin/SeeClick.

In online advertising scenario, sellers often create multiple creatives to provide comprehensive demonstrations, making it essential to present the most appealing design to maximize the Click-Through Rate (CTR). However, sellers generally struggle to consider users preferences for creative design, leading to the relatively lower aesthetics and quantities compared to Artificial Intelligence (AI)-based approaches. Traditional AI-based approaches still face the same problem of not considering user information while having limited aesthetic knowledge from designers. In fact that fusing the user information, the generated creatives can be more attractive because different users may have different preferences. To optimize the results, the generated creatives in traditional methods are then ranked by another module named creative ranking model. The ranking model can predict the CTR score for each creative considering user features. However, the two above stages are regarded as two different tasks and are optimized separately. In this paper, we proposed a new automated Creative Generation pipeline for Click-Through Rate (CG4CTR) with the goal of improving CTR during the creative generation stage. Our contributions have 4 parts: 1) The inpainting mode in stable diffusion is firstly applied to creative generation task in online advertising scene. A self-cyclic generation pipeline is proposed to ensure the convergence of training. 2) Prompt model is designed to generate individualized creatives for different user groups, which can further improve the diversity and quality. 3) Reward model comprehensively considers the multimodal features of image and text to improve the effectiveness of creative ranking task, and it is also critical in self-cyclic pipeline. 4) The significant benefits obtained in online and offline experiments verify the significance of our proposed method.

Introducing HyperSense, our co-designed hardware and software system efficiently controls Analog-to-Digital Converter (ADC) modules' data generation rate based on object presence predictions in sensor data. Addressing challenges posed by escalating sensor quantities and data rates, HyperSense reduces redundant digital data using energy-efficient low-precision ADC, diminishing machine learning system costs. Leveraging neurally-inspired HyperDimensional Computing (HDC), HyperSense analyzes real-time raw low-precision sensor data, offering advantages in handling noise, memory-centricity, and real-time learning. Our proposed HyperSense model combines high-performance software for object detection with real-time hardware prediction, introducing the novel concept of Intelligent Sensor Control. Comprehensive software and hardware evaluations demonstrate our solution's superior performance, evidenced by the highest Area Under the Curve (AUC) and sharpest Receiver Operating Characteristic (ROC) curve among lightweight models. Hardware-wise, our FPGA-based domain-specific accelerator tailored for HyperSense achieves a 5.6x speedup compared to YOLOv4 on NVIDIA Jetson Orin while showing up to 92.1% energy saving compared to the conventional system. These results underscore HyperSense's effectiveness and efficiency, positioning it as a promising solution for intelligent sensing and real-time data processing across diverse applications.

This paper introduces video domain generalization where most video classification networks degenerate due to the lack of exposure to the target domains of divergent distributions. We observe that the global temporal features are less generalizable, due to the temporal domain shift that videos from other unseen domains may have an unexpected absence or misalignment of the temporal relations. This finding has motivated us to solve video domain generalization by effectively learning the local-relation features of different timescales that are more generalizable, and exploiting them along with the global-relation features to maintain the discriminability. This paper presents the VideoDG framework with two technical contributions. The first is a new deep architecture named the Adversarial Pyramid Network, which improves the generalizability of video features by capturing the local-relation, global-relation, and cross-relation features progressively. On the basis of pyramid features, the second contribution is a new and robust approach of adversarial data augmentation that can bridge different video domains by improving the diversity and quality of augmented data. We construct three video domain generalization benchmarks in which domains are divided according to different datasets, different consequences of actions, or different camera views, respectively. VideoDG consistently outperforms the combinations of previous video classification models and existing domain generalization methods on all benchmarks.

Music streaming services heavily rely on recommender systems to improve their users' experience, by helping them navigate through a large musical catalog and discover new songs, albums or artists. However, recommending relevant and personalized content to new users, with few to no interactions with the catalog, is challenging. This is commonly referred to as the user cold start problem. In this applied paper, we present the system recently deployed on the music streaming service Deezer to address this problem. The solution leverages a semi-personalized recommendation strategy, based on a deep neural network architecture and on a clustering of users from heterogeneous sources of information. We extensively show the practical impact of this system and its effectiveness at predicting the future musical preferences of cold start users on Deezer, through both offline and online large-scale experiments. Besides, we publicly release our code as well as anonymized usage data from our experiments. We hope that this release of industrial resources will benefit future research on user cold start recommendation.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司