亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This short paper presents an efficient path following solution for ground vehicles tailored to game AI. Our focus is on adapting established techniques to design simple solutions with parameters that are easily tunable for an efficient benchmark path follower. Our solution pays particular attention to computing a target speed which uses quadratic Bezier curves to estimate the path curvature. The performance of the proposed path follower is evaluated through a variety of test scenarios in a first-person shooter game, demonstrating its effectiveness and robustness in handling different types of paths and vehicles. We achieved a 70% decrease in the total number of stuck events compared to an existing path following solution.

相關內容

Rigid robots can be precise in repetitive tasks, but struggle in unstructured environments. Nature's versatility in such environments inspires researchers to develop biomimetic robots that incorporate compliant and contracting artificial muscles. Among the recently proposed artificial muscle technologies, electrohydraulic actuators are promising since they offer performance comparable to that of mammalian muscles in terms of speed and power density. However, they require high driving voltages and have safety concerns due to exposed electrodes. These high voltages lead to either bulky or inefficient driving electronics that make untethered, high-degree-of-freedom bio-inspired robots difficult to realize. Here, we present hydraulically amplified low voltage electrostatic (HALVE) actuators that match mammalian skeletal muscles in average power density (50.5 W kg-1) and peak strain rate (971 % s-1) at a driving voltage of just 1100 V. This driving voltage is approx. 5-7 times lower compared to other electrohydraulic actuators using paraelectric dielectrics. Furthermore, HALVE actuators are safe to touch, waterproof, and self-clearing, which makes them easy to implement in wearables and robotics. We characterize, model, and physically validate key performance metrics of the actuator and compare its performance to state-of-the-art electrohydraulic designs. Finally, we demonstrate the utility of our actuators on two muscle-based electrohydraulic robots: an untethered soft robotic swimmer and a robotic gripper. We foresee that HALVE actuators can become a key building block for future highly-biomimetic untethered robots and wearables with many independent artificial muscles such as biomimetic hands, faces, or exoskeletons.

A face in a curve arrangement is called popular if it is bounded by the same curve multiple times. Motivated by the automatic generation of curved nonogram puzzles, we investigate possibilities to eliminate the popular faces in an arrangement by inserting a single additional curve. This turns out to be NP-hard; however, it becomes tractable when the number of popular faces is small: We present a probabilistic FPT-approach in the number of popular faces.

Continuous Video Domain Adaptation (CVDA) is a scenario where a source model is required to adapt to a series of individually available changing target domains continuously without source data or target supervision. It has wide applications, such as robotic vision and autonomous driving. The main underlying challenge of CVDA is to learn helpful information only from the unsupervised target data while avoiding forgetting previously learned knowledge catastrophically, which is out of the capability of previous Video-based Unsupervised Domain Adaptation methods. Therefore, we propose a Confidence-Attentive network with geneRalization enhanced self-knowledge disTillation (CART) to address the challenge in CVDA. Firstly, to learn from unsupervised domains, we propose to learn from pseudo labels. However, in continuous adaptation, prediction errors can accumulate rapidly in pseudo labels, and CART effectively tackles this problem with two key modules. Specifically, The first module generates refined pseudo labels using model predictions and deploys a novel attentive learning strategy. The second module compares the outputs of augmented data from the current model to the outputs of weakly augmented data from the source model, forming a novel consistency regularization on the model to alleviate the accumulation of prediction errors. Extensive experiments suggest that the CVDA performance of CART outperforms existing methods by a considerable margin.

The safe linear bandit problem is a version of the classic linear bandit problem where the learner's actions must satisfy an uncertain linear constraint at all rounds. Due its applicability to many real-world settings, this problem has received considerable attention in recent years. We find that by exploiting the geometry of the specific problem setting, we can achieve improved regret guarantees for both well-separated problem instances and action sets that are finite star convex sets. Additionally, we propose a novel algorithm for this setting that chooses problem parameters adaptively and enjoys at least as good regret guarantees as existing algorithms. Lastly, we introduce a generalization of the safe linear bandit setting where the constraints are convex and adapt our algorithms and analyses to this setting by leveraging a novel convex-analysis based approach. Simulation results show improved performance over existing algorithms for a variety of randomly sampled settings.

A novel hack involving Large Language Models (LLMs) has emerged, leveraging adversarial suffixes to trick models into generating perilous responses. This method has garnered considerable attention from reputable media outlets such as the New York Times and Wired, thereby influencing public perception regarding the security and safety of LLMs. In this study, we advocate the utilization of perplexity as one of the means to recognize such potential attacks. The underlying concept behind these hacks revolves around appending an unusually constructed string of text to a harmful query that would otherwise be blocked. This maneuver confuses the protective mechanisms and tricks the model into generating a forbidden response. Such scenarios could result in providing detailed instructions to a malicious user for constructing explosives or orchestrating a bank heist. Our investigation demonstrates the feasibility of employing perplexity, a prevalent natural language processing metric, to detect these adversarial tactics before generating a forbidden response. By evaluating the perplexity of queries with and without such adversarial suffixes using an open-source LLM, we discovered that nearly 90 percent were above a perplexity of 1000. This contrast underscores the efficacy of perplexity for detecting this type of exploit.

The interference from active to passive users is a well-recognized challenge in millimeter-wave (mmWave) communications. We propose a method that enables to limit the interference on passive users (whose presence may not be detected since they do not transmit) with a small penalty to the throughput of active users. Our approach abstracts away (in a simple, yet informative way) the physical layer component and it leverages the directivity of mmWave links and the available network path diversity. We provide linear programming formulations, lower bounds on active users rates, numerical evaluations, and we establish a connection with the problem of (information theoretically) secure communication over mmWave networks.

This paper shows that masked autoencoders (MAE) are scalable self-supervised learners for computer vision. Our MAE approach is simple: we mask random patches of the input image and reconstruct the missing pixels. It is based on two core designs. First, we develop an asymmetric encoder-decoder architecture, with an encoder that operates only on the visible subset of patches (without mask tokens), along with a lightweight decoder that reconstructs the original image from the latent representation and mask tokens. Second, we find that masking a high proportion of the input image, e.g., 75%, yields a nontrivial and meaningful self-supervisory task. Coupling these two designs enables us to train large models efficiently and effectively: we accelerate training (by 3x or more) and improve accuracy. Our scalable approach allows for learning high-capacity models that generalize well: e.g., a vanilla ViT-Huge model achieves the best accuracy (87.8%) among methods that use only ImageNet-1K data. Transfer performance in downstream tasks outperforms supervised pre-training and shows promising scaling behavior.

Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.

Emotion plays an important role in detecting fake news online. When leveraging emotional signals, the existing methods focus on exploiting the emotions of news contents that conveyed by the publishers (i.e., publisher emotion). However, fake news is always fabricated to evoke high-arousal or activating emotions of people to spread like a virus, so the emotions of news comments that aroused by the crowd (i.e., social emotion) can not be ignored. Furthermore, it needs to be explored whether there exists a relationship between publisher emotion and social emotion (i.e., dual emotion), and how the dual emotion appears in fake news. In the paper, we propose Dual Emotion Features to mine dual emotion and the relationship between them for fake news detection. And we design a universal paradigm to plug it into any existing detectors as an enhancement. Experimental results on three real-world datasets indicate the effectiveness of the proposed features.

How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.

北京阿比特科技有限公司