亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work we introduce the CitrusFarm dataset, a comprehensive multimodal sensory dataset collected by a wheeled mobile robot operating in agricultural fields. The dataset offers stereo RGB images with depth information, as well as monochrome, near-infrared and thermal images, presenting diverse spectral responses crucial for agricultural research. Furthermore, it provides a range of navigational sensor data encompassing wheel odometry, LiDAR, inertial measurement unit (IMU), and GNSS with Real-Time Kinematic (RTK) as the centimeter-level positioning ground truth. The dataset comprises seven sequences collected in three fields of citrus trees, featuring various tree species at different growth stages, distinctive planting patterns, as well as varying daylight conditions. It spans a total operation time of 1.7 hours, covers a distance of 7.5 km, and constitutes 1.3 TB of data. We anticipate that this dataset can facilitate the development of autonomous robot systems operating in agricultural tree environments, especially for localization, mapping and crop monitoring tasks. Moreover, the rich sensing modalities offered in this dataset can also support research in a range of robotics and computer vision tasks, such as place recognition, scene understanding, object detection and segmentation, and multimodal learning. The dataset, in conjunction with related tools and resources, is made publicly available at //github.com/UCR-Robotics/Citrus-Farm-Dataset.

相關內容

In this work we propose a novel, highly practical, binocular photometric stereo (PS) framework, which has same acquisition speed as single view PS, however significantly improves the quality of the estimated geometry. As in recent neural multi-view shape estimation frameworks such as NeRF, SIREN and inverse graphics approaches to multi-view photometric stereo (e.g. PS-NeRF) we formulate shape estimation task as learning of a differentiable surface and texture representation by minimising surface normal discrepancy for normals estimated from multiple varying light images for two views as well as discrepancy between rendered surface intensity and observed images. Our method differs from typical multi-view shape estimation approaches in two key ways. First, our surface is represented not as a volume but as a neural heightmap where heights of points on a surface are computed by a deep neural network. Second, instead of predicting an average intensity as PS-NeRF or introducing lambertian material assumptions as Guo et al., we use a learnt BRDF and perform near-field per point intensity rendering. Our method achieves the state-of-the-art performance on the DiLiGenT-MV dataset adapted to binocular stereo setup as well as a new binocular photometric stereo dataset - LUCES-ST.

While much work has been done recently in the realm of model-based control of soft robots and soft-rigid hybrids, most works examine robots that have an inherently serial structure. While these systems have been prevalent in the literature, there is an increasing trend toward designing soft-rigid hybrids with intrinsically coupled elasticity between various degrees of freedom. In this work, we seek to address the issues of modeling and controlling such structures, particularly when underactuated. We introduce several simple models for elastic coupling, typical of those seen in these systems. We then propose a controller that compensates for the elasticity, and we prove its stability with Lyapunov methods without relying on the elastic dominance assumption. This controller is applicable to the general class of underactuated soft robots. After evaluating the controller in simulated cases, we then develop a simple hardware platform to evaluate both the models and the controller. Finally, using the hardware, we demonstrate a novel use case for underactuated, elastically coupled systems in "sensorless" force control.

In this work, we present a novel Sports Ball Detection and Tracking (SBDT) method that can be applied to various sports categories. Our approach is composed of (1) high-resolution feature extraction, (2) position-aware model training, and (3) inference considering temporal consistency, all of which are put together as a new SBDT baseline. Besides, to validate the wide-applicability of our approach, we compare our baseline with 6 state-of-the-art SBDT methods on 5 datasets from different sports categories. We achieve this by newly introducing two SBDT datasets, providing new ball annotations for two datasets, and re-implementing all the methods to ease extensive comparison. Experimental results demonstrate that our approach is substantially superior to existing methods on all the sports categories covered by the datasets. We believe our proposed method can play as a Widely Applicable Strong Baseline (WASB) of SBDT, and our datasets and codebase will promote future SBDT research. Datasets and codes will be made publicly available.

In this paper, we combine the network-assisted full-duplex (NAFD) technology and distributed radar sensing to implement integrated sensing and communication (ISAC). The ISAC system features both uplink and downlink remote radio units (RRUs) equipped with communication and sensing capabilities. We evaluate the communication and sensing performance of the system using the sum communication rates and the Cramer-Rao lower bound (CRLB), respectively. We compare the performance of the proposed scheme with other ISAC schemes, the result shows that the proposed scheme can provide more stable sensing and better communication performance. Furthermore, we propose two power allocation algorithms to optimize the communication and sensing performance jointly. One algorithm is based on the deep Q-network (DQN) and the other one is based on the non-dominated sorting genetic algorithm II (NSGA-II). The proposed algorithms provide more feasible solutions and achieve better system performance than the equal power allocation algorithm.

This work considers a scenario in which an edge server collects data from Internet of Things (IoT) devices equipped with wake-up receivers. Although this procedure enables on-demand data collection, there is still energy waste if the content of the transmitted data following the wake-up is irrelevant. To mitigate this, we advocate the use of Tiny Machine Learning (ML) to enable a semantic response from the IoT devices, so they can send only semantically relevant data. Nevertheless, receiving the ML model and the ML processing at the IoT devices consumes additional energy. We consider the specific instance of image retrieval and investigate the gain brought by the proposed scheme in terms of energy efficiency, considering both the energy cost of introducing the ML model as well as that of wireless communication. The numerical evaluation shows that, compared to a baseline scheme, the proposed scheme can realize both high retrieval accuracy and high energy efficiency, which reaches up to 70% energy reduction when the number of stored images is equal to or larger than 8.

Natural Language Processing (NLP) is a key technique for developing Medical Artificial Intelligence (AI) systems that leverage Electronic Health Record (EHR) data to build diagnostic and prognostic models. NLP enables the conversion of unstructured clinical text into structured data that can be fed into AI algorithms. The emergence of the transformer architecture and large language models (LLMs) has led to remarkable advances in NLP for various healthcare tasks, such as entity recognition, relation extraction, sentence similarity, text summarization, and question answering. In this article, we review the major technical innovations that underpin modern NLP models and present state-of-the-art NLP applications that employ LLMs in radiation oncology research. However, these LLMs are prone to many errors such as hallucinations, biases, and ethical violations, which necessitate rigorous evaluation and validation before clinical deployment. As such, we propose a comprehensive framework for assessing the NLP models based on their purpose and clinical fit, technical performance, bias and trust, legal and ethical implications, and quality assurance, prior to implementation in clinical radiation oncology. Our article aims to provide guidance and insights for researchers and clinicians who are interested in developing and using NLP models in clinical radiation oncology.

With the rapid transformation of computer hardware and algorithms, mobile networking has evolved from low data carrying capacity and high latency to better-optimized networks, either by enhancing the digital network or using different approaches to reduce network traffic. This paper discusses the big data applications and scheduling in the distributed networking and analyzes the opportunities and challenges of data management systems. The analysis shows that the big data scheduling in the cloud computing environment produces the most efficient way to transfer and synchronize data. Since scheduling problems and cloud models are very complex to analyze in different settings, we set it to the typical software defined networks. The development of cloud management models and coflow scheduling algorithm is proved to be the priority of the digital communications and networks development in the future.

This paper aims to develop a framework that enables a robot to execute tasks based on visual information, in response to natural language instructions for Fetch-and-Carry with Object Grounding (FCOG) tasks. Although there have been many frameworks, they usually rely on manually given instruction sentences. Therefore, evaluations have only been conducted with fixed tasks. Furthermore, many multimodal language understanding models for the benchmarks only consider discrete actions. To address the limitations, we propose a framework for the full automation of the generation, execution, and evaluation of FCOG tasks. In addition, we introduce an approach to solving the FCOG tasks by dividing them into four distinct subtasks.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司