Federated Learning (FL) thrives in training a global model with numerous clients by only sharing the parameters of their local models trained with their private training datasets. Therefore, without revealing the private dataset, the clients can obtain a deep learning (DL) model with high performance. However, recent research proposed poisoning attacks that cause a catastrophic loss in the accuracy of the global model when adversaries, posed as benign clients, are present in a group of clients. Therefore, recent studies suggested byzantine-robust FL methods that allow the server to train an accurate global model even with the adversaries present in the system. However, many existing methods require the knowledge of the number of malicious clients or the auxiliary (clean) dataset or the effectiveness reportedly decreased hugely when the private dataset was non-independently and identically distributed (non-IID). In this work, we propose FLGuard, a novel byzantine-robust FL method that detects malicious clients and discards malicious local updates by utilizing the contrastive learning technique, which showed a tremendous improvement as a self-supervised learning method. With contrastive models, we design FLGuard as an ensemble scheme to maximize the defensive capability. We evaluate FLGuard extensively under various poisoning attacks and compare the accuracy of the global model with existing byzantine-robust FL methods. FLGuard outperforms the state-of-the-art defense methods in most cases and shows drastic improvement, especially in non-IID settings. //github.com/201younghanlee/FLGuard
Recent developments in large pre-trained language models have enabled unprecedented performance on a variety of downstream tasks. Achieving best performance with these models often leverages in-context learning, where a model performs a (possibly new) task given one or more examples. However, recent work has shown that the choice of examples can have a large impact on task performance and that finding an optimal set of examples is non-trivial. While there are many existing methods for selecting in-context examples, they generally score examples independently, ignoring the dependency between them and the order in which they are provided to the model. In this work, we propose Retrieval for In-Context Learning (RetICL), a learnable method for modeling and optimally selecting examples sequentially for in-context learning. We frame the problem of sequential example selection as a Markov decision process and train an example retriever using reinforcement learning. We evaluate RetICL on math word problem solving and scientific question answering tasks and show that it consistently outperforms or matches heuristic and learnable baselines. We also use case studies to show that RetICL implicitly learns representations of problem solving strategies.
The fairness of Natural Language Processing (NLP) models has emerged as a crucial concern. Information theory indicates that to achieve fairness, a model should not be able to predict sensitive variables, such as gender, ethnicity, and age. However, information related to these variables often appears implicitly in language, posing a challenge in identifying and mitigating biases effectively. To tackle this issue, we present a novel approach that operates at the embedding level of an NLP model, independent of the specific architecture. Our method leverages insights from recent advances in XAI techniques and employs an embedding transformation to eliminate implicit information from a selected variable. By directly manipulating the embeddings in the final layer, our approach enables a seamless integration into existing models without requiring significant modifications or retraining. In evaluation, we show that the proposed post-hoc approach significantly reduces gender-related associations in NLP models while preserving the overall performance and functionality of the models. An implementation of our method is available: //github.com/fanny-jourdan/TaCo
Recent advances to algorithms for training spiking neural networks (SNNs) often leverage their unique dynamics. While backpropagation through time (BPTT) with surrogate gradients dominate the field, a rich landscape of alternatives can situate algorithms across various points in the performance, bio-plausibility, and complexity landscape. Evaluating and comparing algorithms is currently a cumbersome and error-prone process, requiring them to be repeatedly re-implemented. We introduce Slax, a JAX-based library designed to accelerate SNN algorithm design, compatible with the broader JAX and Flax ecosystem. Slax provides optimized implementations of diverse training algorithms, allowing direct performance comparison. Its toolkit includes methods to visualize and debug algorithms through loss landscapes, gradient similarities, and other metrics of model behavior during training.
Implicit reconstruction of ESDF (Euclidean Signed Distance Field) involves training a neural network to regress the signed distance from any point to the nearest obstacle, which has the advantages of lightweight storage and continuous querying. However, existing algorithms usually rely on conflicting raw observations as training data, resulting in poor map performance. In this paper, we propose LGSDF, an ESDF continual Global learning algorithm aided by Local updating. At the front end, axis-aligned grids are dynamically updated by pre-processed sensor observations, where incremental fusion alleviates estimation error caused by limited viewing directions. At the back end, a randomly initialized implicit ESDF neural network performs continual self-supervised learning guided by these grids to generate smooth and continuous maps. The results on multiple scenes show that LGSDF can construct more accurate ESDF maps and meshes compared with SOTA (State Of The Art) explicit and implicit mapping algorithms. The source code of LGSDF is publicly available at //github.com/BIT-DYN/LGSDF.
Information Bottleneck (IB) is a technique to extract information about one target random variable through another relevant random variable. This technique has garnered significant interest due to its broad applications in information theory and deep learning. Hence, there is a strong motivation to develop efficient numerical methods with high precision and theoretical convergence guarantees. In this paper, we propose a semi-relaxed IB model, where the Markov chain and transition probability condition are relaxed from the relevance-compression function. Based on the proposed model, we develop an algorithm, which recovers the relaxed constraints and involves only closed-form iterations. Specifically, the algorithm is obtained by analyzing the Lagrangian of the relaxed model with alternating minimization in each direction. The convergence property of the proposed algorithm is theoretically guaranteed through descent estimation and Pinsker's inequality. Numerical experiments across classical and discrete distributions corroborate the analysis. Moreover, our proposed algorithm demonstrates notable advantages in terms of computational efficiency, evidenced by significantly reduced run times compared to existing methods with comparable accuracy.
Existing prompt learning methods have shown certain capabilities in Out-of-Distribution (OOD) detection, but the lack of OOD images in the target dataset in their training can lead to mismatches between OOD images and In-Distribution (ID) categories, resulting in a high false positive rate. To address this issue, we introduce a novel OOD detection method, named 'NegPrompt', to learn a set of negative prompts, each representing a negative connotation of a given class label, for delineating the boundaries between ID and OOD images. It learns such negative prompts with ID data only, without any reliance on external outlier data. Further, current methods assume the availability of samples of all ID classes, rendering them ineffective in open-vocabulary learning scenarios where the inference stage can contain novel ID classes not present during training. In contrast, our learned negative prompts are transferable to novel class labels. Experiments on various ImageNet benchmarks show that NegPrompt surpasses state-of-the-art prompt-learning-based OOD detection methods and maintains a consistent lead in hard OOD detection in closed- and open-vocabulary classification scenarios. Code is available at //github.com/mala-lab/negprompt.
In recent years, the development of pre-trained language models (PLMs) has gained momentum, showcasing their capacity to transcend linguistic barriers and facilitate knowledge transfer across diverse languages. However, this progress has predominantly bypassed the inclusion of very-low resource languages, creating a notable void in the multilingual landscape. This paper addresses this gap by introducing four tailored PLMs specifically finetuned for Angolan languages, employing a Multilingual Adaptive Fine-tuning (MAFT) approach. In this paper, we survey the role of informed embedding initialization and synthetic data in enhancing the performance of MAFT models in downstream tasks. We improve baseline over SOTA AfroXLMR-base (developed through MAFT) and OFA (an effective embedding initialization) by 12.3 and 3.8 points respectively.
Recent advances in named entity recognition (NER) have pushed the boundary of the task to incorporate visual signals, leading to many variants, including multi-modal NER (MNER) or grounded MNER (GMNER). A key challenge to these tasks is that the model should be able to generalize to the entities unseen during the training, and should be able to handle the training samples with noisy annotations. To address this obstacle, we propose SCANNER (Span CANdidate detection and recognition for NER), a model capable of effectively handling all three NER variants. SCANNER is a two-stage structure; we extract entity candidates in the first stage and use it as a query to get knowledge, effectively pulling knowledge from various sources. We can boost our performance by utilizing this entity-centric extracted knowledge to address unseen entities. Furthermore, to tackle the challenges arising from noisy annotations in NER datasets, we introduce a novel self-distillation method, enhancing the robustness and accuracy of our model in processing training data with inherent uncertainties. Our approach demonstrates competitive performance on the NER benchmark and surpasses existing methods on both MNER and GMNER benchmarks. Further analysis shows that the proposed distillation and knowledge utilization methods improve the performance of our model on various benchmarks.
Diabetic Retinopathy (DR) stands as the leading cause of blindness globally, particularly affecting individuals between the ages of 20 and 70. This paper presents a Computer-Aided Diagnosis (CAD) system designed for the automatic classification of retinal images into five distinct classes: Normal, Mild, Moderate, Severe, and Proliferative Diabetic Retinopathy (PDR). The proposed system leverages Convolutional Neural Networks (CNNs) employing pre-trained deep learning models. Through the application of fine-tuning techniques, our model is trained on fundus images of diabetic retinopathy with resolutions of 350x350x3 and 224x224x3. Experimental results obtained on the Kaggle platform, utilizing resources comprising 4 CPUs, 17 GB RAM, and 1 GB Disk, demonstrate the efficacy of our approach. The achieved Area Under the Curve (AUC) values for CNN, MobileNet, VGG-16, InceptionV3, and InceptionResNetV2 models are 0.50, 0.70, 0.53, 0.63, and 0.69, respectively.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.