亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Implicit reconstruction of ESDF (Euclidean Signed Distance Field) involves training a neural network to regress the signed distance from any point to the nearest obstacle, which has the advantages of lightweight storage and continuous querying. However, existing algorithms usually rely on conflicting raw observations as training data, resulting in poor map performance. In this paper, we propose LGSDF, an ESDF continual Global learning algorithm aided by Local updating. At the front end, axis-aligned grids are dynamically updated by pre-processed sensor observations, where incremental fusion alleviates estimation error caused by limited viewing directions. At the back end, a randomly initialized implicit ESDF neural network performs continual self-supervised learning guided by these grids to generate smooth and continuous maps. The results on multiple scenes show that LGSDF can construct more accurate ESDF maps and meshes compared with SOTA (State Of The Art) explicit and implicit mapping algorithms. The source code of LGSDF is publicly available at //github.com/BIT-DYN/LGSDF.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

Mechanistic Interpretability (MI) promises a path toward fully understanding how neural networks make their predictions. Prior work demonstrates that even when trained to perform simple arithmetic, models can implement a variety of algorithms (sometimes concurrently) depending on initialization and hyperparameters. Does this mean neuron-level interpretability techniques have limited applicability? We argue that high-dimensional neural networks can learn low-dimensional representations of their training data that are useful beyond simply making good predictions. Such representations can be understood through the mechanistic interpretability lens and provide insights that are surprisingly faithful to human-derived domain knowledge. This indicates that such approaches to interpretability can be useful for deriving a new understanding of a problem from models trained to solve it. As a case study, we extract nuclear physics concepts by studying models trained to reproduce nuclear data.

Electronic Health Records (EHRs) contain a wealth of patient data; however, the sparsity of EHRs data often presents significant challenges for predictive modeling. Conventional imputation methods inadequately distinguish between real and imputed data, leading to potential inaccuracies of patient representations. To address these issues, we introduce PRISM, a framework that indirectly imputes data by leveraging prototype representations of similar patients, thus ensuring compact representations that preserve patient information. PRISM also includes a feature confidence learner module, which evaluates the reliability of each feature considering missing statuses. Additionally, PRISM introduces a new patient similarity metric that accounts for feature confidence, avoiding overreliance on imprecise imputed values. Our extensive experiments on the MIMIC-III, MIMIC-IV, PhysioNet Challenge 2012, eICU datasets demonstrate PRISM's superior performance in predicting in-hospital mortality and 30-day readmission tasks, showcasing its effectiveness in handling EHR data sparsity. For the sake of reproducibility and further research, we have made the code publicly available at //github.com/yhzhu99/PRISM.

This study investigates why and how inconsistency in the generation of Large Language Models (LLMs) might induce or exacerbate societal injustice. For instance, LLMs frequently exhibit contrasting gender stereotypes regarding the same career depending on varied contexts, highlighting the arguably harmful unpredictability of LLMs' behavioral patterns. To augment the existing discrimination assessment with the capability to account for variation in LLM generation, we formulate the Prejudice-Volatility Framework (PVF) that precisely defines behavioral metrics for assessing LLMs, which delineate the probability distribution of LLMs' stereotypes from the perspective of token prediction probability. Specifically, we employ a data-mining approach to approximate the possible applied contexts of LLMs and devise statistical metrics to evaluate the corresponding contextualized societal discrimination risk. Further, we mathematically dissect the aggregated discrimination risk of LLMs into prejudice risk, originating from their system bias, and volatility risk, stemming from their generation inconsistency. While initially intended for assessing discrimination in LLMs, our proposed PVF facilitates the comprehensive and flexible measurement of any inductive biases, including knowledge alongside prejudice, across various modality models. We apply PVF to 12 most commonly adopted LLMs and compare their risk levels. Our findings reveal that: i) prejudice risk is the primary cause of discrimination risk in LLMs, indicating that inherent biases in these models lead to stereotypical outputs; ii) most LLMs exhibit significant pro-male stereotypes across nearly all careers; iii) alignment with Reinforcement Learning from Human Feedback lowers discrimination by reducing prejudice, but increases volatility; iv) discrimination risk in LLMs correlates with socio-economic factors like profession salaries.

The rapid advancements in Large Language Models (LLMs) have revolutionized natural language processing, with GPTs, customized versions of ChatGPT available on the GPT Store, emerging as a prominent technology for specific domains and tasks. To support academic research on GPTs, we introduce GPTZoo, a large-scale dataset comprising 730,420 GPT instances. Each instance includes rich metadata with 21 attributes describing its characteristics, as well as instructions, knowledge files, and third-party services utilized during its development. GPTZoo aims to provide researchers with a comprehensive and readily available resource to study the real-world applications, performance, and potential of GPTs. To facilitate efficient retrieval and analysis of GPTs, we also developed an automated command-line interface (CLI) that supports keyword-based searching of the dataset. To promote open research and innovation, the GPTZoo dataset will undergo continuous updates, and we are granting researchers public access to GPTZoo and its associated tools.

Large Language Models (LLMs) have garnered considerable attention owing to their remarkable capabilities, leading to an increasing number of companies offering LLMs as services. Different LLMs achieve different performance at different costs. A challenge for users lies in choosing the LLMs that best fit their needs, balancing cost and performance. In this paper, we propose a framework for addressing the cost-effective query allocation problem for LLMs. Given a set of input queries and candidate LLMs, our framework, named OptLLM, provides users with a range of optimal solutions to choose from, aligning with their budget constraints and performance preferences, including options for maximizing accuracy and minimizing cost. OptLLM predicts the performance of candidate LLMs on each query using a multi-label classification model with uncertainty estimation and then iteratively generates a set of non-dominated solutions by destructing and reconstructing the current solution. To evaluate the effectiveness of OptLLM, we conduct extensive experiments on various types of tasks, including text classification, question answering, sentiment analysis, reasoning, and log parsing. Our experimental results demonstrate that OptLLM substantially reduces costs by 2.40% to 49.18% while achieving the same accuracy as the best LLM. Compared to other multi-objective optimization algorithms, OptLLM improves accuracy by 2.94% to 69.05% at the same cost or saves costs by 8.79% and 95.87% while maintaining the highest attainable accuracy.

The integration of Large Language Models (LLMs) into various global cultures fundamentally presents a cultural challenge: LLMs must navigate interactions, respect social norms, and avoid transgressing cultural boundaries. However, it is still unclear if LLMs can adapt their outputs to diverse cultural norms. Our study focuses on this aspect. We introduce NormAd, a novel dataset, which includes 2.6k stories that represent social and cultural norms from 75 countries, to assess the ability of LLMs to adapt to different granular levels of socio-cultural contexts such as the country of origin, its associated cultural values, and prevalent social norms. Our study reveals that LLMs struggle with cultural reasoning across all contextual granularities, showing stronger adaptability to English-centric cultures over those from the Global South. Even with explicit social norms, the top-performing model, Mistral-7b-Instruct, achieves only 81.8\% accuracy, lagging behind the 95.6\% achieved by humans. Evaluation on NormAd further reveals that LLMs struggle to adapt to stories involving gift-giving across cultures. Due to inherent agreement or sycophancy biases, LLMs find it considerably easier to assess the social acceptability of stories that adhere to cultural norms than those that deviate from them. Our benchmark measures the cultural adaptability (or lack thereof) of LLMs, emphasizing the potential to make these technologies more equitable and useful for global audiences. We release the NormAd dataset and its associated code on GitHub.

The automatic evaluation of natural language generation (NLG) systems presents a long-lasting challenge. Recent studies have highlighted various neural metrics that align well with human evaluations. Yet, the robustness of these evaluators against adversarial perturbations remains largely under-explored due to the unique challenges in obtaining adversarial data for different NLG evaluation tasks. To address the problem, we introduce AdvEval, a novel black-box adversarial framework against NLG evaluators. AdvEval is specially tailored to generate data that yield strong disagreements between human and victim evaluators. Specifically, inspired by the recent success of large language models (LLMs) in text generation and evaluation, we adopt strong LLMs as both the data generator and gold evaluator. Adversarial data are automatically optimized with feedback from the gold and victim evaluator. We conduct experiments on 12 victim evaluators and 11 NLG datasets, spanning tasks including dialogue, summarization, and question evaluation. The results show that AdvEval can lead to significant performance degradation of various victim metrics, thereby validating its efficacy.

Training large Deep Neural Network (DNN) models requires thousands of GPUs for days or weeks at a time. At these scales, failures are frequent and can have a big impact on training throughput. Restoring performance using spare GPU servers becomes increasingly expensive as models grow. SlipStream is a system for efficient DNN training in the presence of failures, without using spare servers. It exploits the functional redundancy inherent in distributed training systems -- servers hold the same model parameters across data-parallel groups -- as well as the bubbles in the pipeline schedule within each data-parallel group. SlipStream dynamically re-routes the work of a failed server to its data-parallel peers, ensuring continuous training despite multiple failures. However, re-routing work leads to imbalances across pipeline stages that degrades training throughput. SlipStream introduces two optimizations that allow re-routed work to execute within bubbles of the original pipeline schedule. First, it decouples the backward pass computation into two phases. Second, it staggers the execution of the optimizer step across pipeline stages. Combined, these optimizations enable schedules that minimize or even eliminate training throughput degradation during failures. We describe a prototype for SlipStream and show that it achieves high training throughput under multiple failures, outperforming recent proposals for fault-tolerant training such as Oobleck and Bamboo by up to 1.46x and 1.64x, respectively.

Graph neural networks (GNNs) have demonstrated a significant boost in prediction performance on graph data. At the same time, the predictions made by these models are often hard to interpret. In that regard, many efforts have been made to explain the prediction mechanisms of these models from perspectives such as GNNExplainer, XGNN and PGExplainer. Although such works present systematic frameworks to interpret GNNs, a holistic review for explainable GNNs is unavailable. In this survey, we present a comprehensive review of explainability techniques developed for GNNs. We focus on explainable graph neural networks and categorize them based on the use of explainable methods. We further provide the common performance metrics for GNNs explanations and point out several future research directions.

With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose occupancy networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.

北京阿比特科技有限公司