亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this research, we introduce an algorithm that produces what appears to be a new mathematical object as a consequence of projecting the \( n \)-dimensional \( Z \)-curve onto an \( n \)-dimensional sphere. The first part presents the algorithm that enables this transformation, and the second part focuses on studying its properties.

相關內容

Large Language Models (LLMs) present massive inherent knowledge and superior semantic comprehension capability, which have revolutionized various tasks in natural language processing. Despite their success, a critical gap remains in enabling LLMs to perform knowledge graph completion (KGC). Empirical evidence suggests that LLMs consistently perform worse than conventional KGC approaches, even through sophisticated prompt design or tailored instruction-tuning. Fundamentally, applying LLMs on KGC introduces several critical challenges, including a vast set of entity candidates, hallucination issue of LLMs, and under-exploitation of the graph structure. To address these challenges, we propose a novel instruction-tuning-based method, namely FtG. Specifically, we present a \textit{filter-then-generate} paradigm and formulate the KGC task into a multiple-choice question format. In this way, we can harness the capability of LLMs while mitigating the issue casused by hallucinations. Moreover, we devise a flexible ego-graph serialization prompt and employ a structure-text adapter to couple structure and text information in a contextualized manner. Experimental results demonstrate that FtG achieves substantial performance gain compared to existing state-of-the-art methods. The instruction dataset and code are available at \url{//github.com/LB0828/FtG}.

In this work we study the behavior of the forward-backward (FB) algorithm when the proximity operator is replaced by a sub-iterative procedure to approximate a Gaussian denoiser, in a Plug-and-Play (PnP) fashion. In particular, we consider both analysis and synthesis Gaussian denoisers within a dictionary framework, obtained by unrolling dual-FB iterations or FB iterations, respectively. We analyze the associated minimization problems as well as the asymptotic behavior of the resulting FB-PnP iterations. In particular, we show that the synthesis Gaussian denoising problem can be viewed as a proximity operator. For each case, analysis and synthesis, we show that the FB-PnP algorithms solve the same problem whether we use only one or an infinite number of sub-iteration to solve the denoising problem at each iteration. To this aim, we show that each "one sub-iteration" strategy within the FB-PnP can be interpreted as a primal-dual algorithm when a warm-restart strategy is used. We further present similar results when using a Moreau-Yosida smoothing of the global problem, for an arbitrary number of sub-iterations. Finally, we provide numerical simulations to illustrate our theoretical results. In particular we first consider a toy compressive sensing example, as well as an image restoration problem in a deep dictionary framework.

Recently, designing neural solvers for large-scale linear systems of equations has emerged as a promising approach in scientific and engineering computing. This paper first introduce the Richardson(m) neural solver by employing a meta network to predict the weights of the long-step Richardson iterative method. Next, by incorporating momentum and preconditioning techniques, we further enhance convergence. Numerical experiments on anisotropic second-order elliptic equations demonstrate that these new solvers achieve faster convergence and lower computational complexity compared to both the Chebyshev iterative method with optimal weights and the Chebyshev semi-iteration method. To address the strong dependence of the aforementioned single-level neural solvers on PDE parameters and grid size, we integrate them with two multilevel neural solvers developed in recent years. Using alternating optimization techniques, we construct Richardson(m)-FNS for anisotropic equations and NAG-Richardson(m)-WANS for the Helmholtz equation. Numerical experiments show that these two multilevel neural solvers effectively overcome the drawback of single-level methods, providing better robustness and computational efficiency.

Symbolic regression (SR) is a powerful machine learning approach that searches for both the structure and parameters of algebraic models, offering interpretable and compact representations of complex data. Unlike traditional regression methods, SR explores progressively complex feature spaces, which can uncover simple models that generalize well, even from small datasets. Among SR algorithms, the Sure Independence Screening and Sparsifying Operator (SISSO) has proven particularly effective in the natural sciences, helping to rediscover fundamental physical laws as well as discover new interpretable equations for materials property modeling. However, its widespread adoption has been limited by performance inefficiencies and the challenges posed by its FORTRAN-based implementation, especially in modern computing environments. In this work, we introduce TorchSISSO, a native Python implementation built in the PyTorch framework. TorchSISSO leverages GPU acceleration, easy integration, and extensibility, offering a significant speed-up and improved accuracy over the original. We demonstrate that TorchSISSO matches or exceeds the performance of the original SISSO across a range of tasks, while dramatically reducing computational time and improving accessibility for broader scientific applications.

In this study, we delve into the validity of conventional personality questionnaires in capturing the human-like personality traits of Large Language Models (LLMs). Our objective is to assess the congruence between the personality traits LLMs claim to possess and their demonstrated tendencies in real-world scenarios. By conducting an extensive examination of LLM outputs against observed human response patterns, we aim to understand the disjunction between self-knowledge and action in LLMs.

Up-to techniques' represent enhancements of the coinduction proof method and are widely used on coinductive behavioural relations such as bisimilarity. Abstract formulations of these coinductive techniques exist, using fixed-points or category theory. A proposal has been recently put forward for transporting the enhancements onto the concrete realms of inductive behavioural relations, i.e., relations defined from inductive observables, such as traces or enriched forms of traces. The abstract meaning of such 'inductive enhancements', however, has not been explored. In this paper, we review the theory, and then propose an abstract account of it, using fixed-point theory in complete lattices.

In this work, we demonstrate the integration of a score-matching diffusion model into a deterministic architecture for time-domain musical source extraction, resulting in enhanced audio quality. To address the typically slow iterative sampling process of diffusion models, we apply consistency distillation and reduce the sampling process to a single step, achieving performance comparable to that of diffusion models, and with two or more steps, even surpassing them. Trained on the Slakh2100 dataset for four instruments (bass, drums, guitar, and piano), our model shows significant improvements across objective metrics compared to baseline methods. Sound examples are available at //consistency-separation.github.io/.

Transformers have a potential of learning longer-term dependency, but are limited by a fixed-length context in the setting of language modeling. We propose a novel neural architecture Transformer-XL that enables learning dependency beyond a fixed length without disrupting temporal coherence. It consists of a segment-level recurrence mechanism and a novel positional encoding scheme. Our method not only enables capturing longer-term dependency, but also resolves the context fragmentation problem. As a result, Transformer-XL learns dependency that is 80% longer than RNNs and 450% longer than vanilla Transformers, achieves better performance on both short and long sequences, and is up to 1,800+ times faster than vanilla Transformers during evaluation. Notably, we improve the state-of-the-art results of bpc/perplexity to 0.99 on enwiki8, 1.08 on text8, 18.3 on WikiText-103, 21.8 on One Billion Word, and 54.5 on Penn Treebank (without finetuning). When trained only on WikiText-103, Transformer-XL manages to generate reasonably coherent, novel text articles with thousands of tokens. Our code, pretrained models, and hyperparameters are available in both Tensorflow and PyTorch.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.

北京阿比特科技有限公司