亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Obtaining rigorous statistical guarantees for generalization under distribution shift remains an open and active research area. We study a setting we call combinatorial distribution shift, where (a) under the test- and training-distributions, the labels $z$ are determined by pairs of features $(x,y)$, (b) the training distribution has coverage of certain marginal distributions over $x$ and $y$ separately, but (c) the test distribution involves examples from a product distribution over $(x,y)$ that is {not} covered by the training distribution. Focusing on the special case where the labels are given by bilinear embeddings into a Hilbert space $H$: $\mathbb{E}[z \mid x,y ]=\langle f_{\star}(x),g_{\star}(y)\rangle_{{H}}$, we aim to extrapolate to a test distribution domain that is $not$ covered in training, i.e., achieving bilinear combinatorial extrapolation. Our setting generalizes a special case of matrix completion from missing-not-at-random data, for which all existing results require the ground-truth matrices to be either exactly low-rank, or to exhibit very sharp spectral cutoffs. In this work, we develop a series of theoretical results that enable bilinear combinatorial extrapolation under gradual spectral decay as observed in typical high-dimensional data, including novel algorithms, generalization guarantees, and linear-algebraic results. A key tool is a novel perturbation bound for the rank-$k$ singular value decomposition approximations between two matrices that depends on the relative spectral gap rather than the absolute spectral gap, a result that may be of broader independent interest.

相關內容

The field of explainability in artificial intelligence has witnessed a growing number of studies and increasing scholarly interest. However, the lack of human-friendly and individual interpretations in explaining the outcomes of machine learning algorithms has significantly hindered the acceptance of these methods by clinicians in their research and clinical practice. To address this, our study employs counterfactual explanations to explore "what if?" scenarios in medical research, aiming to expand our understanding beyond existing boundaries on magnetic resonance imaging (MRI) features for diagnosing pediatric posterior fossa brain tumors. In our case study, the proposed concept provides a novel way to examine alternative decision-making scenarios that offer personalized and context-specific insights, enabling the validation of predictions and clarification of variations under diverse circumstances. Additionally, we explore the potential use of counterfactuals for data augmentation and evaluate their feasibility as an alternative approach in our medical research case. The results demonstrate the promising potential of using counterfactual explanations to enhance trust and acceptance of AI-driven methods in clinical research.

Federated Learning (FL) has emerged as a promising approach for collaborative machine learning, addressing data privacy concerns. However, existing FL platforms and frameworks often present challenges for software engineers in terms of complexity, limited customization options, and scalability limitations. In this paper, we introduce EdgeFL, an edge-only lightweight decentralized FL framework, designed to overcome the limitations of centralized aggregation and scalability in FL deployments. By adopting an edge-only model training and aggregation approach, EdgeFL eliminates the need for a central server, enabling seamless scalability across diverse use cases. With a straightforward integration process requiring just four lines of code (LOC), software engineers can easily incorporate FL functionalities into their AI products. Furthermore, EdgeFL offers the flexibility to customize aggregation functions, empowering engineers to adapt them to specific needs. Based on the results, we demonstrate that EdgeFL achieves superior performance compared to existing FL platforms/frameworks. Our results show that EdgeFL reduces weights update latency and enables faster model evolution, enhancing the efficiency of edge devices. Moreover, EdgeFL exhibits improved classification accuracy compared to traditional centralized FL approaches. By leveraging EdgeFL, software engineers can harness the benefits of federated learning while overcoming the challenges associated with existing FL platforms/frameworks.

The relevant features for a machine learning task may be aggregated from data sources collected on different nodes in a network. This problem, which we call decentralized prediction, creates a number of interesting systems challenges in managing data routing, placing computation, and time-synchronization. This paper presents EdgeServe, a machine learning system that can serve decentralized predictions. EdgeServe relies on a low-latency message broker to route data through a network to nodes that can serve predictions. EdgeServe relies on a series of novel optimizations that can tradeoff computation, communication, and accuracy. We evaluate EdgeServe on three decentralized prediction tasks: (1) multi-camera object tracking, (2) network intrusion detection, and (3) human activity recognition.

With the rapid growth of information, recommender systems have become integral for providing personalized suggestions and overcoming information overload. However, their practical deployment often encounters "dirty" data, where noise or malicious information can lead to abnormal recommendations. Research on improving recommender systems' robustness against such dirty data has thus gained significant attention. This survey provides a comprehensive review of recent work on recommender systems' robustness. We first present a taxonomy to organize current techniques for withstanding malicious attacks and natural noise. We then explore state-of-the-art methods in each category, including fraudster detection, adversarial training, certifiable robust training against malicious attacks, and regularization, purification, self-supervised learning against natural noise. Additionally, we summarize evaluation metrics and common datasets used to assess robustness. We discuss robustness across varying recommendation scenarios and its interplay with other properties like accuracy, interpretability, privacy, and fairness. Finally, we delve into open issues and future research directions in this emerging field. Our goal is to equip readers with a holistic understanding of robust recommender systems and spotlight pathways for future research and development.

Regression discontinuity design (RDD) is widely adopted for causal inference under intervention determined by a continuous variable. While one is interested in treatment effect heterogeneity by subgroups in many applications, RDD typically suffers from small subgroup-wise sample sizes, which makes the estimation results highly instable. To solve this issue, we introduce hierarchical RDD (HRDD), a hierarchical Bayes approach for pursuing treatment effect heterogeneity in RDD. A key feature of HRDD is to employ a pseudo-model based on a loss function to estimate subgroup-level parameters of treatment effects under RDD, and assign a hierarchical prior distribution to ``borrow strength" from other subgroups. The posterior computation can be easily done by a simple Gibbs sampling. We demonstrate the proposed HRDD through simulation and real data analysis, and show that HRDD provides much more stable point and interval estimation than separately applying the standard RDD method to each subgroup.

Within recent times, cybercriminals have curated a variety of organised and resolute cyber attacks within a range of cyber systems, leading to consequential ramifications to private and governmental institutions. Current security-based automation and orchestrations focus on automating fixed purpose and hard-coded solutions, which are easily surpassed by modern-day cyber attacks. Research within Automated Cyber Defence will allow the development and enabling intelligence response by autonomously defending networked systems through sequential decision-making agents. This article comprehensively elaborates the developments within Automated Cyber Defence through a requirement analysis divided into two sub-areas, namely, automated defence and attack agents and Autonomous Cyber Operation (ACO) Gyms. The requirement analysis allows the comparison of automated agents and highlights the importance of ACO Gyms for their continual development. The requirement analysis is also used to critique ACO Gyms with an overall aim to develop them for deploying automated agents within real-world networked systems. Relevant future challenges were addressed from the overall analysis to accelerate development within the area of Automated Cyber Defence.

Deep learning-based algorithms have seen a massive popularity in different areas of remote sensing image analysis over the past decade. Recently, transformers-based architectures, originally introduced in natural language processing, have pervaded computer vision field where the self-attention mechanism has been utilized as a replacement to the popular convolution operator for capturing long-range dependencies. Inspired by recent advances in computer vision, remote sensing community has also witnessed an increased exploration of vision transformers for a diverse set of tasks. Although a number of surveys have focused on transformers in computer vision in general, to the best of our knowledge we are the first to present a systematic review of recent advances based on transformers in remote sensing. Our survey covers more than 60 recent transformers-based methods for different remote sensing problems in sub-areas of remote sensing: very high-resolution (VHR), hyperspectral (HSI) and synthetic aperture radar (SAR) imagery. We conclude the survey by discussing different challenges and open issues of transformers in remote sensing. Additionally, we intend to frequently update and maintain the latest transformers in remote sensing papers with their respective code at: //github.com/VIROBO-15/Transformer-in-Remote-Sensing

Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.

The difficulty of deploying various deep learning (DL) models on diverse DL hardwares has boosted the research and development of DL compilers in the community. Several DL compilers have been proposed from both industry and academia such as Tensorflow XLA and TVM. Similarly, the DL compilers take the DL models described in different DL frameworks as input, and then generate optimized codes for diverse DL hardwares as output. However, none of the existing survey has analyzed the unique design of the DL compilers comprehensively. In this paper, we perform a comprehensive survey of existing DL compilers by dissecting the commonly adopted design in details, with emphasis on the DL oriented multi-level IRs, and frontend/backend optimizations. Specifically, we provide a comprehensive comparison among existing DL compilers from various aspects. In addition, we present detailed analysis of the multi-level IR design and compiler optimization techniques. Finally, several insights are highlighted as the potential research directions of DL compiler. This is the first survey paper focusing on the unique design of DL compiler, which we hope can pave the road for future research towards the DL compiler.

Convolutional Neural Networks (CNNs) have gained significant traction in the field of machine learning, particularly due to their high accuracy in visual recognition. Recent works have pushed the performance of GPU implementations of CNNs to significantly improve their classification and training times. With these improvements, many frameworks have become available for implementing CNNs on both CPUs and GPUs, with no support for FPGA implementations. In this work we present a modified version of the popular CNN framework Caffe, with FPGA support. This allows for classification using CNN models and specialized FPGA implementations with the flexibility of reprogramming the device when necessary, seamless memory transactions between host and device, simple-to-use test benches, and the ability to create pipelined layer implementations. To validate the framework, we use the Xilinx SDAccel environment to implement an FPGA-based Winograd convolution engine and show that the FPGA layer can be used alongside other layers running on a host processor to run several popular CNNs (AlexNet, GoogleNet, VGG A, Overfeat). The results show that our framework achieves 50 GFLOPS across 3x3 convolutions in the benchmarks. This is achieved within a practical framework, which will aid in future development of FPGA-based CNNs.

北京阿比特科技有限公司