亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces a theory for assessing and optimizing the multiple-input-multiple-output performance of multi-port cluster antennas in terms of efficiency, channel correlation, and power distribution. A method based on a convex optimization of feeding coefficients is extended with additional constraints allowing the user to control a ratio between the power radiated by the clusters. The formulation of the problem makes it possible to simultaneously optimize total efficiency and channel correlation with a fixed ratio between power radiated by the clusters, thus examining a trade-off between these parameters. It is shown that channel correlation, total efficiency, and allocation of radiated power are mutually conflicting parameters. The trade-offs are shown and discussed. The theory is demonstrated on a four-element antenna array and on a mobile terminal antenna.

相關內容

This paper investigates the secure resource allocation for a downlink integrated sensing and communication system with multiple legal users and potential eavesdroppers. In the considered model, the base station (BS) simultaneously transmits sensing and communication signals through beamforming design, where the sensing signals can be viewed as artificial noise to enhance the security of communication signals. To further enhance the security in the semantic layer, the semantic information is extracted from the original information before transmission. The user side can only successfully recover the received information with the help of the knowledge base shared with the BS, which is stored in advance. Our aim is to maximize the sum semantic secrecy rate of all users while maintaining the minimum quality of service for each user and guaranteeing overall sensing performance. To solve this sum semantic secrecy rate maximization problem, an iterative algorithm is proposed using the alternating optimization method. The simulation results demonstrate the superiority of the proposed algorithm in terms of secure semantic communication and reliable detection.

Model generalizability to unseen datasets, concerned with in-the-wild robustness, is less studied for indoor single-image depth prediction. We leverage gradient-based meta-learning for higher generalizability on zero-shot cross-dataset inference. Unlike the most-studied image classification in meta-learning, depth is pixel-level continuous range values, and mappings from each image to depth vary widely across environments. Thus no explicit task boundaries exist. We instead propose fine-grained task that treats each RGB-D pair as a task in our meta-optimization. We first show meta-learning on limited data induces much better prior (max +29.4\%). Using meta-learned weights as initialization for following supervised learning, without involving extra data or information, it consistently outperforms baselines without the method. Compared to most indoor-depth methods that only train/ test on a single dataset, we propose zero-shot cross-dataset protocols, closely evaluate robustness, and show consistently higher generalizability and accuracy by our meta-initialization. The work at the intersection of depth and meta-learning potentially drives both research streams to step closer to practical use.

This paper proposes a novel, more computationally efficient method for optimizing robot excitation trajectories for dynamic parameter identification, emphasizing self-collision avoidance. This addresses the system identification challenges for getting high-quality training data associated with co-manipulated robotic arms that can be equipped with a variety of tools, a common scenario in industrial but also clinical and research contexts. Utilizing the Unified Robotics Description Format (URDF) to implement a symbolic Python implementation of the Recursive Newton-Euler Algorithm (RNEA), the approach aids in dynamically estimating parameters such as inertia using regression analyses on data from real robots. The excitation trajectory was evaluated and achieved on par criteria when compared to state-of-the-art reported results which didn't consider self-collision and tool calibrations. Furthermore, physical Human-Robot Interaction (pHRI) admittance control experiments were conducted in a surgical context to evaluate the derived inverse dynamics model showing a 30.1\% workload reduction by the NASA TLX questionnaire.

We give an operational definition of information-theoretic resources within a given multipartite classical or quantum correlation. We present our causal model that serves as the source coding side of this correlation and introduce a novel concept of resource rate. We argue that, beyond classical secrecy, additional resources exist that are useful for the security of distributed computing problems, which can be captured by the resource rate. Furthermore, we establish a relationship between resource rate and an extension of Shannon's logarithmic information measure, namely, total correlation. Subsequently, we present a novel quantum secrecy monotone and investigate a quantum hybrid key distribution system as an extension of our causal model. Finally, we discuss some connections to optimal transport (OT) problem.

Semantic communications have emerged as a new paradigm for improving communication efficiency by transmitting the semantic information of a source message that is most relevant to a desired task at the receiver. Most existing approaches typically utilize neural networks (NNs) to design end-to-end semantic communication systems, where NN-based semantic encoders output continuously distributed signals to be sent directly to the channel in an analog fashion. In this work, we propose a joint coding-modulation (JCM) framework for digital semantic communications by using variational autoencoder (VAE). Our approach learns the transition probability from source data to discrete constellation symbols, thereby avoiding the non-differentiability problem of digital modulation. Meanwhile, by jointly designing the coding and modulation process together, we can match the obtained modulation strategy with the operating channel condition. We also derive a matching loss function with information-theoretic meaning for end-to-end training. Experiments on image semantic communication validate the superiority of our proposed JCM framework over the state-of-the-art quantization-based digital semantic coding-modulation methods across a wide range of channel conditions, transmission rates, and modulation orders. Furthermore, its performance gap to analog semantic communication reduces as the modulation order increases while enjoying the hardware implementation convenience.

This paper introduces a novel approach to enumerate and assess Trapping sets in quasi-cyclic codes, those with circulant sizes that are non-prime numbers. Leveraging the quasi-cyclic properties, the method employs a tabular technique to streamline the importance sampling step for estimating the pseudo-codeword weight of Trapping sets. The presented methodology draws on the mathematical framework established in the provided theorem, which elucidates the behavior of projection and lifting transformations on pseudo-codewords

This paper investigates the spectrum sharing between a multiple-input single-output (MISO) secure communication system and a multiple-input multiple-output (MIMO) radar system in the presence of one suspicious eavesdropper. We jointly design the radar waveform and communication beamforming vector at the two systems, such that the interference between the base station (BS) and radar is reduced, and the detrimental radar interference to the communication system is enhanced to jam the eavesdropper, thereby increasing secure information transmission performance. In particular, by considering the imperfect channel state information (CSI) for the user and eavesdropper, we maximize the worst-case secrecy rate at the user, while ensuring the detection performance of radar system. To tackle this challenging problem, we propose a two-layer robust cooperative algorithm based on the S-lemma and semidefinite relaxation techniques. Simulation results demonstrate that the proposed algorithm achieves significant secrecy rate gains over the non-robust scheme. Furthermore, we illustrate the trade-off between secrecy rate and detection probability.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司