Recent developments in Markov chain Monte Carlo (MCMC) algorithms allow us to run thousands of chains in parallel almost as quickly as a single chain, using hardware accelerators such as GPUs. While each chain still needs to forget its initial point during a warmup phase, the subsequent sampling phase can be shorter than in classical settings, where we run only a few chains. To determine if the resulting short chains are reliable, we need to assess how close the Markov chains are to their stationary distribution after warmup. The potential scale reduction factor $\widehat R$ is a popular convergence diagnostic but unfortunately can require a long sampling phase to work well. We present a nested design to overcome this challenge and a generalization called \textit{nested} $\widehat R$. This new diagnostic works under conditions similar to $\widehat R$ and completes the workflow for GPU-friendly samplers. In addition, the proposed nesting provides theoretical insights into the utility of $\widehat R$, in both classical and short-chains regimes.
Evaluation of Large Language Models (LLMs) is challenging because instruction-following necessitates alignment with human values and the required set of skills varies depending on the instruction. However, previous studies have mainly focused on coarse-grained evaluation (i.e. overall preference-based evaluation), which limits interpretability since it does not consider the nature of user instructions that require instance-wise skill composition. In this paper, we introduce FLASK (Fine-grained Language Model Evaluation based on Alignment Skill Sets), a fine-grained evaluation protocol for both human-based and model-based evaluation which decomposes coarse-level scoring to a skill set-level scoring for each instruction. We experimentally observe that the fine-graininess of evaluation is crucial for attaining a holistic view of model performance and increasing the reliability of the evaluation. Using FLASK, we compare multiple open-source and proprietary LLMs and observe a high correlation between model-based and human-based evaluations. We publicly release the evaluation data and code implementation at //github.com/kaistAI/FLASK.
We focus on the problem of ranking $N$ objects starting from a set of noisy pairwise comparisons provided by a crowd of unequal workers, each worker being characterized by a specific degree of reliability, which reflects her ability to rank pairs of objects. More specifically, we assume that objects are endowed with intrinsic qualities and that the probability with which an object is preferred to another depends both on the difference between the qualities of the two competitors and on the reliability of the worker. We propose QUITE, a non-adaptive ranking algorithm that jointly estimates workers' reliabilities and qualities of objects. Performance of QUITE is compared in different scenarios against previously proposed algorithms. Finally, we show how QUITE can be naturally made adaptive.
Large Language Models (LLMs) have shown promise in the autonomous driving sector, particularly in generalization and interpretability. We introduce a unique object-level multimodal LLM architecture that merges vectorized numeric modalities with a pre-trained LLM to improve context understanding in driving situations. We also present a new dataset of 160k QA pairs derived from 10k driving scenarios, paired with high quality control commands collected with RL agent and question answer pairs generated by teacher LLM (GPT-3.5). A distinct pretraining strategy is devised to align numeric vector modalities with static LLM representations using vector captioning language data. We also introduce an evaluation metric for Driving QA and demonstrate our LLM-driver's proficiency in interpreting driving scenarios, answering questions, and decision-making. Our findings highlight the potential of LLM-based driving action generation in comparison to traditional behavioral cloning. We make our benchmark, datasets, and model available for further exploration.
Imitation Learning from Observation (ILfO) is a setting in which a learner tries to imitate the behavior of an expert, using only observational data and without the direct guidance of demonstrated actions. In this paper, we re-examine the use of optimal transport for IL, in which a reward is generated based on the Wasserstein distance between the state trajectories of the learner and expert. We show that existing methods can be simplified to generate a reward function without requiring learned models or adversarial learning. Unlike many other state-of-the-art methods, our approach can be integrated with any RL algorithm, and is amenable to ILfO. We demonstrate the effectiveness of this simple approach on a variety of continuous control tasks and find that it surpasses the state of the art in the IlfO setting, achieving expert-level performance across a range of evaluation domains even when observing only a single expert trajectory without actions.
Recent breakthroughs in large language models (LLMs) have brought remarkable success in the field of LLM-as-Agent. Nevertheless, a prevalent assumption is that the information processed by LLMs is consistently honest, neglecting the pervasive deceptive or misleading information in human society and AI-generated content. This oversight makes LLMs susceptible to malicious manipulations, potentially resulting in detrimental outcomes. This study utilizes the intricate Avalon game as a testbed to explore LLMs' potential in deceptive environments. Avalon, full of misinformation and requiring sophisticated logic, manifests as a "Game-of-Thoughts". Inspired by the efficacy of humans' recursive thinking and perspective-taking in the Avalon game, we introduce a novel framework, Recursive Contemplation (ReCon), to enhance LLMs' ability to identify and counteract deceptive information. ReCon combines formulation and refinement contemplation processes; formulation contemplation produces initial thoughts and speech, while refinement contemplation further polishes them. Additionally, we incorporate first-order and second-order perspective transitions into these processes respectively. Specifically, the first-order allows an LLM agent to infer others' mental states, and the second-order involves understanding how others perceive the agent's mental state. After integrating ReCon with different LLMs, extensive experiment results from the Avalon game indicate its efficacy in aiding LLMs to discern and maneuver around deceptive information without extra fine-tuning and data. Finally, we offer a possible explanation for the efficacy of ReCon and explore the current limitations of LLMs in terms of safety, reasoning, speaking style, and format, potentially furnishing insights for subsequent research.
Recent research in decoding methods for Natural Language Generation (NLG) tasks has shown that MAP decoding is not optimal, because model probabilities do not always align with human preferences. Stronger decoding methods, including Quality Estimation (QE) reranking and Minimum Bayes' Risk (MBR) decoding, have since been proposed to mitigate the model-perplexity-vs-quality mismatch. While these decoding methods achieve state-of-the-art performance, they are prohibitively expensive to compute. In this work, we propose MBR finetuning and QE finetuning which distill the quality gains from these decoding methods at training time, while using an efficient decoding algorithm at inference time. Using the canonical NLG task of Neural Machine Translation (NMT), we show that even with self-training, these finetuning methods significantly outperform the base model. Moreover, when using an external LLM as a teacher model, these finetuning methods outperform finetuning on human-generated references. These findings suggest new ways to leverage monolingual data to achieve improvements in model quality that are on par with, or even exceed, improvements from human-curated data, while maintaining maximum efficiency during decoding.
Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.
We study joint learning of Convolutional Neural Network (CNN) and Transformer for vision-language pre-training (VLPT) which aims to learn cross-modal alignments from millions of image-text pairs. State-of-the-art approaches extract salient image regions and align regions with words step-by-step. As region-based visual features usually represent parts of an image, it is challenging for existing vision-language models to fully understand the semantics from paired natural languages. In this paper, we propose SOHO to "See Out of tHe bOx" that takes a whole image as input, and learns vision-language representation in an end-to-end manner. SOHO does not require bounding box annotations which enables inference 10 times faster than region-based approaches. In particular, SOHO learns to extract comprehensive yet compact image features through a visual dictionary (VD) that facilitates cross-modal understanding. VD is designed to represent consistent visual abstractions of similar semantics. It is updated on-the-fly and utilized in our proposed pre-training task Masked Visual Modeling (MVM). We conduct experiments on four well-established vision-language tasks by following standard VLPT settings. In particular, SOHO achieves absolute gains of 2.0% R@1 score on MSCOCO text retrieval 5k test split, 1.5% accuracy on NLVR$^2$ test-P split, 6.7% accuracy on SNLI-VE test split, respectively.
Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.
We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).