The impact of digital device use on health and well-being is a pressing question to which individuals, families, schools, policy makers, legislators, and digital designers are all demanding answers. However, the scientific literature on this topic to date is marred by small and/or unrepresentative samples, poor measurement of core constructs (e.g., device use, smartphone addiction), and a limited ability to address the psychological and behavioral mechanisms that may underlie the relationships between device use and well-being. A number of recent authoritative reviews have made urgent calls for future research projects to address these limitations. The critical role of research is to identify which patterns of use are associated with benefits versus risks, and who is more vulnerable to harmful versus beneficial outcomes, so that we can pursue evidence-based product design, education, and regulation aimed at maximizing benefits and minimizing risks of smartphones and other digital devices. We describe a protocol for a Digital Well-Being (DWB) study to help answer these questions.
Deep learning models have shown promising predictive accuracy for time-series healthcare applications. However, ensuring the robustness of these models is vital for building trustworthy AI systems. Existing research predominantly focuses on robustness to synthetic adversarial examples, crafted by adding imperceptible perturbations to clean input data. However, these synthetic adversarial examples do not accurately reflect the most challenging real-world scenarios, especially in the context of healthcare data. Consequently, robustness to synthetic adversarial examples may not necessarily translate to robustness against naturally occurring adversarial examples, which is highly desirable for trustworthy AI. We propose a method to curate datasets comprised of natural adversarial examples to evaluate model robustness. The method relies on probabilistic labels obtained from automated weakly-supervised labeling that combines noisy and cheap-to-obtain labeling heuristics. Based on these labels, our method adversarially orders the input data and uses this ordering to construct a sequence of increasingly adversarial datasets. Our evaluation on six medical case studies and three non-medical case studies demonstrates the efficacy and statistical validity of our approach to generating naturally adversarial datasets
A long-standing goal of reinforcement learning is to acquire agents that can learn on training tasks and generalize well on unseen tasks that may share a similar dynamic but with different reward functions. A general challenge is to quantitatively measure the similarities between these different tasks, which is vital for analyzing the task distribution and further designing algorithms with stronger generalization. To address this, we present a novel metric named Task Distribution Relevance (TDR) via optimal Q functions of different tasks to capture the relevance of the task distribution quantitatively. In the case of tasks with a high TDR, i.e., the tasks differ significantly, we show that the Markovian policies cannot differentiate them, leading to poor performance. Based on this insight, we encode all historical information into policies for distinguishing different tasks and propose Task Aware Dreamer (TAD), which extends world models into our reward-informed world models to capture invariant latent features over different tasks. In TAD, we calculate the corresponding variational lower bound of the data log-likelihood, including a novel term to distinguish different tasks via states, to optimize reward-informed world models. Extensive experiments in both image-based control tasks and state-based control tasks demonstrate that TAD can significantly improve the performance of handling different tasks simultaneously, especially for those with high TDR, and demonstrate a strong generalization ability to unseen tasks.
With the large-scale integration and use of neural network models, especially in critical embedded systems, their security assessment to guarantee their reliability is becoming an urgent need. More particularly, models deployed in embedded platforms, such as 32-bit microcontrollers, are physically accessible by adversaries and therefore vulnerable to hardware disturbances. We present the first set of experiments on the use of two fault injection means, electromagnetic and laser injections, applied on neural networks models embedded on a Cortex M4 32-bit microcontroller platform. Contrary to most of state-of-the-art works dedicated to the alteration of the internal parameters or input values, our goal is to simulate and experimentally demonstrate the impact of a specific fault model that is instruction skip. For that purpose, we assessed several modification attacks on the control flow of a neural network inference. We reveal integrity threats by targeting several steps in the inference program of typical convolutional neural network models, which may be exploited by an attacker to alter the predictions of the target models with different adversarial goals.
The advent of edge devices dedicated to machine learning tasks enabled the execution of AI-based applications that efficiently process and classify the data acquired by the resource-constrained devices populating the Internet of Things. The proliferation of such applications (e.g., critical monitoring in smart cities) demands new strategies to make these systems also sustainable from an energetic point of view. In this paper, we present an energy-aware approach for the design and deployment of self-adaptive AI-based applications that can balance application objectives (e.g., accuracy in object detection and frames processing rate) with energy consumption. We address the problem of determining the set of configurations that can be used to self-adapt the system with a meta-heuristic search procedure that only needs a small number of empirical samples. The final set of configurations are selected using weighted gray relational analysis, and mapped to the operation modes of the self-adaptive application. We validate our approach on an AI-based application for pedestrian detection. Results show that our self-adaptive application can outperform non-adaptive baseline configurations by saving up to 81\% of energy while loosing only between 2% and 6% in accuracy.
This paper addresses the tradeoff between standard accuracy on clean examples and robustness against adversarial examples in deep neural networks (DNNs). Although adversarial training (AT) improves robustness, it degrades the standard accuracy, thus yielding the tradeoff. To mitigate this tradeoff, we propose a novel AT method called ARREST, which comprises three components: (i) adversarial finetuning (AFT), (ii) representation-guided knowledge distillation (RGKD), and (iii) noisy replay (NR). AFT trains a DNN on adversarial examples by initializing its parameters with a DNN that is standardly pretrained on clean examples. RGKD and NR respectively entail a regularization term and an algorithm to preserve latent representations of clean examples during AFT. RGKD penalizes the distance between the representations of the standardly pretrained and AFT DNNs. NR switches input adversarial examples to nonadversarial ones when the representation changes significantly during AFT. By combining these components, ARREST achieves both high standard accuracy and robustness. Experimental results demonstrate that ARREST mitigates the tradeoff more effectively than previous AT-based methods do.
Research software plays a crucial role in advancing scientific knowledge, but ensuring its sustainability, maintainability, and long-term viability is an ongoing challenge. The Sustainable Research Software Institute (SRSI) Model has been designed to address the concerns, and presents a comprehensive framework designed to promote sustainable practices in the research software community. However the SRSI Model does not address the transitional requirements for the Exascale Computing Project (ECP) Software Technology (ECP-ST) focus area specifically. This white paper provides an overview and detailed description of how ECP-ST will transition into the SRSI in a compressed time frame that a) meets the needs of the ECP end-of-technical-activities deadline; and b) ensures the continuity of the sustainability efforts that are already underway.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Deep neural networks (DNNs) have become a proven and indispensable machine learning tool. As a black-box model, it remains difficult to diagnose what aspects of the model's input drive the decisions of a DNN. In countless real-world domains, from legislation and law enforcement to healthcare, such diagnosis is essential to ensure that DNN decisions are driven by aspects appropriate in the context of its use. The development of methods and studies enabling the explanation of a DNN's decisions has thus blossomed into an active, broad area of research. A practitioner wanting to study explainable deep learning may be intimidated by the plethora of orthogonal directions the field has taken. This complexity is further exacerbated by competing definitions of what it means ``to explain'' the actions of a DNN and to evaluate an approach's ``ability to explain''. This article offers a field guide to explore the space of explainable deep learning aimed at those uninitiated in the field. The field guide: i) Introduces three simple dimensions defining the space of foundational methods that contribute to explainable deep learning, ii) discusses the evaluations for model explanations, iii) places explainability in the context of other related deep learning research areas, and iv) finally elaborates on user-oriented explanation designing and potential future directions on explainable deep learning. We hope the guide is used as an easy-to-digest starting point for those just embarking on research in this field.
Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.