亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The paper describes several applications of information inequalities to problems in database theory. The problems discussed include: upper bounds of a query's output, worst-case optimal join algorithms, the query domination problem, and the implication problem for approximate integrity constraints. The paper is self-contained: all required concepts and results from information inequalities are introduced here, gradually, and motivated by database problems.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Networking · MoDELS · 模型評估 · Neural Networks ·
2024 年 7 月 11 日

This paper explores the synergistic potential of neuromorphic and edge computing to create a versatile machine learning (ML) system tailored for processing data captured by dynamic vision sensors. We construct and train hybrid models, blending spiking neural networks (SNNs) and artificial neural networks (ANNs) using PyTorch and Lava frameworks. Our hybrid architecture integrates an SNN for temporal feature extraction and an ANN for classification. We delve into the challenges of deploying such hybrid structures on hardware. Specifically, we deploy individual components on Intel's Neuromorphic Processor Loihi (for SNN) and Jetson Nano (for ANN). We also propose an accumulator circuit to transfer data from the spiking to the non-spiking domain. Furthermore, we conduct comprehensive performance analyses of hybrid SNN-ANN models on a heterogeneous system of neuromorphic and edge AI hardware, evaluating accuracy, latency, power, and energy consumption. Our findings demonstrate that the hybrid spiking networks surpass the baseline ANN model across all metrics and outperform the baseline SNN model in accuracy and latency.

In this paper we consider contamination by code generation test sets, in particular in their use in modern large language models. We discuss three possible sources of such contamination and show findings supporting each of them: (i) direct data leakage, (ii) indirect data leakage through the use of synthetic data and (iii) overfitting to evaluation sets during model selection. Key to our findings is a new dataset of 161 prompts with their associated python solutions, dataset which is released at //huggingface.co/datasets/CohereForAI/lbpp .

Recent advancements in Large Language Models (LLMs) have significantly extended their capabilities, evolving from basic text generation to complex, human-like interactions. In light of the possibilities that LLMs could assume significant workplace responsibilities, it becomes imminently necessary to explore LLMs' capacities as professional assistants. This study focuses on the aspect of career interests by applying the Occupation Network's Interest Profiler short form to LLMs as if they were human participants and investigates their hypothetical career interests and competence, examining how these vary with language changes and model advancements. We analyzed the answers using a general linear mixed model approach and found distinct career interest inclinations among LLMs, particularly towards the social and artistic domains. Interestingly, these preferences did not align with the occupations where LLMs exhibited higher competence. This novel approach of using psychometric instruments and sophisticated statistical tools on LLMs unveils fresh perspectives on their integration into professional environments, highlighting human-like tendencies and promoting a reevaluation of LLMs' self-perception and competency alignment in the workforce.

Social media datasets are essential for research on disinformation, influence operations, social sensing, hate speech detection, cyberbullying, and other significant topics. However, access to these datasets is often restricted due to costs and platform regulations. As such, acquiring datasets that span multiple platforms which are crucial for a comprehensive understanding of the digital ecosystem is particularly challenging. This paper explores the potential of large language models to create lexically and semantically relevant social media datasets across multiple platforms, aiming to match the quality of real datasets. We employ ChatGPT to generate synthetic data from two real datasets, each consisting of posts from three different social media platforms. We assess the lexical and semantic properties of the synthetic data and compare them with those of the real data. Our empirical findings suggest that using large language models to generate synthetic multi-platform social media data is promising. However, further enhancements are necessary to improve the fidelity of the outputs.

This paper introduces the notion of referring forms as a new metric for analyzing sequential circuits from a functional perspective. Sequential circuits are modeled as causal stream functions, the outputs of which depend solely on the past and current inputs. Referring forms are defined based on the type expressions of functions and represent how a circuit refers to past inputs. The key contribution of this study is identifying a universal property in multiple clock domain circuits using referring forms. This theoretical framework is expected to enhance the comprehension and analysis of sequential circuits.

This paper derives a complete set of quadratic constraints (QCs) for the repeated ReLU. The complete set of QCs is described by a collection of $2^{n_v}$ matrix copositivity conditions where $n_v$ is the dimension of the repeated ReLU. We also show that only two functions satisfy all QCs in our complete set: the repeated ReLU and a repeated "flipped" ReLU. Thus our complete set of QCs bounds the repeated ReLU as tight as possible up to the sign invariance inherent in quadratic forms. We derive a similar complete set of incremental QCs for repeated ReLU, which can potentially lead to less conservative Lipschitz bounds for ReLU networks than the standard LipSDP approach. Finally, we illustrate the use of the complete set of QCs to assess stability and performance for recurrent neural networks with ReLU activation functions. The stability/performance condition combines Lyapunov/dissipativity theory with the QCs for repeated ReLU. A numerical implementation is given and demonstrated via a simple example.

Linearizability is a commonly accepted correctness criterion for concurrent data structures. However, verifying linearizability of highly concurrent data structures is still a challenging task. In this paper, we present a simple and complete proof technique for verifying linearizability of concurrent stacks. Our proof technique reduces linearizability of concurrent stacks to establishing a set of conditions. These conditions are based on the happened-before order of operations, intuitively express the LIFO semantics and can be proved by simple arguments. Designers of concurrent data structures can easily and quickly learn to use the proof technique. We have successfully applied the method to several challenging concurrent stacks: the TS stack, the HSY stack, and the FA stack, etc.

This paper provides an overview of current approaches for solving inverse problems in imaging using variational methods and machine learning. A special focus lies on point estimators and their robustness against adversarial perturbations. In this context results of numerical experiments for a one-dimensional toy problem are provided, showing the robustness of different approaches and empirically verifying theoretical guarantees. Another focus of this review is the exploration of the subspace of data-consistent solutions through explicit guidance to satisfy specific semantic or textural properties.

This research aims to find where visually impaired users find appliances hard to use and suggest guideline to solve this issue. 181 visually impaired users have been surveyed, and 12 visually impaired users have been selected based on disability cause and classification. In a home-like environment, we had participants perform tasks which were sorted using Hierarchical task analysis on six major home appliances. From this research we found out that home appliances sometimes only provide visual information which causes difficulty in sensory processing. Also, interfaces tactile/auditory feedbacks are the same making it hard for people to recognize which feature is processed. Blind users cannot see the provided information so they rely on long-term memory to use products. This research provides guideline for button, knob and remote control interface for visually impaired users. This information will be helpful for project planners, designers, and developers to create products which are accessible by visually impaired people. Some of the features will be applied to upcoming home appliance products.

This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.

北京阿比特科技有限公司