The A* algorithm is commonly used to solve NP-hard combinatorial optimization problems. When provided with an accurate heuristic function, A* can solve such problems in time complexity that is polynomial in the solution depth. This fact implies that accurate heuristic approximation for many such problems is also NP-hard. In this context, we examine a line of recent publications that propose the use of deep neural networks for heuristic approximation. We assert that these works suffer from inherent scalability limitations since -- under the assumption that P$\ne$NP -- such approaches result in either (a) network sizes that scale exponentially in the instance sizes or (b) heuristic approximation accuracy that scales inversely with the instance sizes. Our claim is supported by experimental results for three representative NP-hard search problems that show that fitting deep neural networks accurately to heuristic functions necessitates network sizes that scale exponentially with the instance size.
A fundamental task in science is to design experiments that yield valuable insights about the system under study. Mathematically, these insights can be represented as a utility or risk function that shapes the value of conducting each experiment. We present PDBAL, a targeted active learning method that adaptively designs experiments to maximize scientific utility. PDBAL takes a user-specified risk function and combines it with a probabilistic model of the experimental outcomes to choose designs that rapidly converge on a high-utility model. We prove theoretical bounds on the label complexity of PDBAL and provide fast closed-form solutions for designing experiments with common exponential family likelihoods. In simulation studies, PDBAL consistently outperforms standard untargeted approaches that focus on maximizing expected information gain over the design space. Finally, we demonstrate the scientific potential of PDBAL through a study on a large cancer drug screen dataset where PDBAL quickly recovers the most efficacious drugs with a small fraction of the total number of experiments.
The problem of monotone submodular maximization has been studied extensively due to its wide range of applications. However, there are cases where one can only access the objective function in a distorted or noisy form because of the uncertain nature or the errors involved in the evaluation. This paper considers the problem of constrained monotone submodular maximization with noisy oracles introduced by [Hassidim et al., 2017]. For a cardinality constraint, we propose an algorithm achieving a near-optimal $\left(1-\frac{1}{e}-O(\varepsilon)\right)$-approximation guarantee (for arbitrary $\varepsilon > 0$) with only a polynomial number of queries to the noisy value oracle, which improves the exponential query complexity of [Singer et al., 2018]. For general matroid constraints, we show the first constant approximation algorithm in the presence of noise. Our main approaches are to design a novel local search framework that can handle the effect of noise and to construct certain smoothing surrogate functions for noise reduction.
Recent years have witnessed remarkable progress in artificial intelligence (AI) thanks to refined deep network structures, powerful computing devices, and large-scale labeled datasets. However, researchers have mainly invested in the optimization of models and computational devices, leading to the fact that good models and powerful computing devices are currently readily available, while datasets are still stuck at the initial stage of large-scale but low quality. Data becomes a major obstacle to AI development. Taking note of this, we dig deeper and find that there has been some but unstructured work on data optimization. They focus on various problems in datasets and attempt to improve dataset quality by optimizing its structure to facilitate AI development. In this paper, we present the first review of recent advances in this area. First, we summarize and analyze various problems that exist in large-scale computer vision datasets. We then define data optimization and classify data optimization algorithms into three directions according to the optimization form: data sampling, data subset selection, and active learning. Next, we organize these data optimization works according to data problems addressed, and provide a systematic and comparative description. Finally, we summarize the existing literature and propose some potential future research topics.
The acoustic inverse obstacle scattering problem consists of determining the shape of a domain from measurements of the scattered far field due to some set of incident fields (probes). For a penetrable object with known sound speed, this can be accomplished by treating the boundary alone as an unknown curve. Alternatively, one can treat the entire object as unknown and use a more general volumetric representation, without making use of the known sound speed. Both lead to strongly nonlinear and nonconvex optimization problems for which recursive linearization provides a useful framework for numerical analysis. After extending our shape optimization approach developed earlier for impenetrable bodies, we carry out a systematic study of both methods and compare their performance on a variety of examples. Our findings indicate that the volumetric approach is more robust, even though the number of degrees of freedom is significantly larger. We conclude with a discussion of this phenomenon and potential directions for further research.
Wireless sensor networks are among the most promising technologies of the current era because of their small size, lower cost, and ease of deployment. With the increasing number of wireless sensors, the probability of generating missing data also rises. This incomplete data could lead to disastrous consequences if used for decision-making. There is rich literature dealing with this problem. However, most approaches show performance degradation when a sizable amount of data is lost. Inspired by the emerging field of graph signal processing, this paper performs a new study of a Sobolev reconstruction algorithm in wireless sensor networks. Experimental comparisons on several publicly available datasets demonstrate that the algorithm surpasses multiple state-of-the-art techniques by a maximum margin of 54%. We further show that this algorithm consistently retrieves the missing data even during massive data loss situations.
In this paper, we develop the constrained energy minimizing generalized multiscale finite element method (CEM-GMsFEM) with mixed boundary conditions (Dirichlet and Neumann) for the elasticity equations in high contrast media. By a special treatment of mixed boundary conditions separately, and combining the construction of the relaxed and constraint version of the CEM-GMsFEM, we discover that the method offers some advantages such as the independence of the target region's contrast from precision, while the sizes of oversampling domains have a significant impact on numerical accuracy. Moreover, to our best knowledge, this is the first proof of the convergence of the CEM-GMsFEM with mixed boundary conditions for the elasticity equations given. Some numerical experiments are provided to demonstrate the method's performance.
We present Theseus, an efficient application-agnostic open source library for differentiable nonlinear least squares (DNLS) optimization built on PyTorch, providing a common framework for end-to-end structured learning in robotics and vision. Existing DNLS implementations are application specific and do not always incorporate many ingredients important for efficiency. Theseus is application-agnostic, as we illustrate with several example applications that are built using the same underlying differentiable components, such as second-order optimizers, standard costs functions, and Lie groups. For efficiency, Theseus incorporates support for sparse solvers, automatic vectorization, batching, GPU acceleration, and gradient computation with implicit differentiation and direct loss minimization. We do extensive performance evaluation in a set of applications, demonstrating significant efficiency gains and better scalability when these features are incorporated. Project page: //sites.google.com/view/theseus-ai
Resource constrained project scheduling is an important combinatorial optimisation problem with many practical applications. With complex requirements such as precedence constraints, limited resources, and finance-based objectives, finding optimal solutions for large problem instances is very challenging even with well-customised meta-heuristics and matheuristics. To address this challenge, we propose a new math-heuristic algorithm based on Merge Search and parallel computing to solve the resource constrained project scheduling with the aim of maximising the net present value. This paper presents a novel matheuristic framework designed for resource constrained project scheduling, Merge search, which is a variable partitioning and merging mechanism to formulate restricted mixed integer programs with the aim of improving an existing pool of solutions. The solution pool is obtained via a customised parallel ant colony optimisation algorithm, which is also capable of generating high quality solutions on its own. The experimental results show that the proposed method outperforms the current state-of-the-art algorithms on known benchmark problem instances. Further analyses also demonstrate that the proposed algorithm is substantially more efficient compared to its counterparts in respect to its convergence properties when considering multiple cores.
The objective of this work is to develop a speaker recognition model to be used in diverse scenarios. We hypothesise that two components should be adequately configured to build such a model. First, adequate architecture would be required. We explore several recent state-of-the-art models, including ECAPA-TDNN and MFA-Conformer, as well as other baselines. Second, a massive amount of data would be required. We investigate several new training data configurations combining a few existing datasets. The most extensive configuration includes over 87k speakers' 10.22k hours of speech. Four evaluation protocols are adopted to measure how the trained model performs in diverse scenarios. Through experiments, we find that MFA-Conformer with the least inductive bias generalises the best. We also show that training with proposed large data configurations gives better performance. A boost in generalisation is observed, where the average performance on four evaluation protocols improves by more than 20%. In addition, we also demonstrate that these models' performances can improve even further when increasing capacity.
Airplane refueling problem (ARP) is a scheduling problem with an objective function of fractional form. Given a fleet of $n$ airplanes with mid-air refueling technique, each airplane has a specific fuel capacity and fuel consumption rate. The fleet starts to fly together to a same target and during the trip each airplane could instantaneously refuel to other airplanes and then be dropped out. The question is how to find the best refueling policy to make the last remaining airplane travels the farthest. We give a definition of the sequential feasible solution and construct a sequential search algorithm, whose computational complexity depends on the number of sequential feasible solutions referred to $Q_n$. By utilizing combination and recurrence ideas, we prove that the the upper bound of $Q_n$ is $2^{n-2}$. Then we focus on the worst-case and investigate the complexity of the sequential search algorithm from a dynamic perspective. Given a worst-case instance under some assumptions, we prove that there must exist an index $m$ such that when $n$ is greater than $2m$, $Q_n$ turns out to be upper bounded by $\frac{m^2}{n}C_n^m$. Here the index $m$ is a constant and could be regarded as an "inflection point": with the increasing scale of input $n$, $Q_n$ turns out to be a polynomial function of $n$. Hence, the sequential search algorithm turns out to run in polynomial time of $n$. Moreover, we build an efficient computability scheme by which we shall predict the complexity of $Q_n$ to choose a proper algorithm considering the available running time for decision makers or users.