The Quantum CONGEST model is a variant of the CONGEST model, where messages consist of $O(\log(n))$ qubits. We give a general framework for implementing quantum query algorithms in Quantum CONGEST, using the concept of parallel-queries. We apply our framework for distributed quantum queries in two settings: when data is distributed over the network, and graph theoretical problems where the network defines the input. The first is slightly unusual in CONGEST but our results follow almost directly. The second is more traditional for the CONGEST model but here we require some classical CONGEST steps to get our results. In the setting with distributed data, we show how a network can schedule a meeting in one of $k$ dates using $\tilde{O}(\sqrt{kD}+D)$ rounds, with $D$ the network diameter. We also give an efficient algorithm for element distinctness: if all nodes are given numbers, then the nodes can find any duplicates in $\tilde{O}(n^{2/3}D^{1/3})$ rounds. We also generalize the protocol for the distributed Deutsch-Jozsa problem from the two-party setting considered in [arXiv:quant-ph/9802040] to general networks, giving a novel separation between exact classical and exact quantum protocols in CONGEST. When the input is the network structure itself, we almost directly recover the $O(\sqrt{nD})$ round diameter computation algorithm of Le Gall and Magniez [arXiv:1804.02917]. We also compute the radius in the same number of rounds, and give an $\epsilon$-additive approximation of the average eccentricity in $\tilde{O}(D+D^{3/2}/\epsilon)$ rounds. Finally, we give quantum speedups for the problems of cycle detection and girth computation. We detect whether a graph has a cycle of length at most $k$ in $O(D+(Dn)^{1/2-1/\Theta(k)})$ rounds. We also give a $\tilde{O}(D+(Dn)^{1/2-1/\Theta(g)})$ round algorithm for finding the girth $g$, beating the known classical lower bound.
In the upcoming 6G era, existing terrestrial networks have evolved toward space-air-ground integrated networks (SAGIN), providing ultra-high data rates, seamless network coverage, and ubiquitous intelligence for communications of applications and services. However, conventional communications in SAGIN still face data confidentiality issues. Fortunately, the concept of Quantum Key Distribution (QKD) over SAGIN is able to provide information-theoretic security for secure communications in SAGIN with quantum cryptography. Therefore, in this paper, we propose the quantum-secured SAGIN which is feasible to achieve proven secure communications using quantum mechanics to protect data channels between space, air, and ground nodes. Moreover, we propose a universal QKD service provisioning framework to minimize the cost of QKD services under the uncertainty and dynamics of communications in quantum-secured SAGIN. In this framework, fiber-based QKD services are deployed in passive optical networks with the advantages of low loss and high stability. Moreover, the widely covered and flexible satellite- and UAV-based QKD services are provisioned as a supplement during the real-time data transmission phase. Finally, to examine the effectiveness of the proposed concept and framework, a case study of quantum-secured SAGIN in the Metaverse is conducted where uncertain and dynamic factors of the secure communications in Metaverse applications are effectively resolved in the proposed framework.
Distributed machine learning (ML) can bring more computational resources to bear than single-machine learning, thus enabling reductions in training time. Distributed learning partitions models and data over many machines, allowing model and dataset sizes beyond the available compute power and memory of a single machine. In practice though, distributed ML is challenging when distribution is mandatory, rather than chosen by the practitioner. In such scenarios, data could unavoidably be separated among workers due to limited memory capacity per worker or even because of data privacy issues. There, existing distributed methods will utterly fail due to dominant transfer costs across workers, or do not even apply. We propose a new approach to distributed fully connected neural network learning, called independent subnet training (IST), to handle these cases. In IST, the original network is decomposed into a set of narrow subnetworks with the same depth. These subnetworks are then trained locally before parameters are exchanged to produce new subnets and the training cycle repeats. Such a naturally "model parallel" approach limits memory usage by storing only a portion of network parameters on each device. Additionally, no requirements exist for sharing data between workers (i.e., subnet training is local and independent) and communication volume and frequency are reduced by decomposing the original network into independent subnets. These properties of IST can cope with issues due to distributed data, slow interconnects, or limited device memory, making IST a suitable approach for cases of mandatory distribution. We show experimentally that IST results in training times that are much lower than common distributed learning approaches.
We study the distributed minimum spanning tree (MST) problem, a fundamental problem in distributed computing. It is well-known that distributed MST can be solved in $\tilde{O}(D+\sqrt{n})$ rounds in the standard CONGEST model (where $n$ is the network size and $D$ is the network diameter) and this is essentially the best possible round complexity (up to logarithmic factors). However, in resource-constrained networks such as ad hoc wireless and sensor networks, nodes spending so much time can lead to significant spending of resources such as energy. Motivated by the above consideration, we study distributed algorithms for MST under the \emph{sleeping model} [Chatterjee et al., PODC 2020], a model for design and analysis of resource-efficient distributed algorithms. In the sleeping model, a node can be in one of two modes in any round -- \emph{sleeping} or \emph{awake} (unlike the traditional model where nodes are always awake). Only the rounds in which a node is \emph{awake} are counted, while \emph{sleeping} rounds are ignored. A node spends resources only in the awake rounds and hence the main goal is to minimize the \emph{awake complexity} of a distributed algorithm, the worst-case number of rounds any node is awake. We present deterministic and randomized distributed MST algorithms that have an \emph{optimal} awake complexity of $O(\log n)$ time with a matching lower bound. We also show that our randomized awake-optimal algorithm has essentially the best possible round complexity by presenting a lower bound of $\tilde{\Omega}(n)$ on the product of the awake and round complexity of any distributed algorithm (including randomized) that outputs an MST, where $\tilde{\Omega}$ hides a $1/(\text{polylog } n)$ factor.
We consider networks of small, autonomous devices that communicate with each other wirelessly. Minimizing energy usage is an important consideration in designing algorithms for such networks, as battery life is a crucial and limited resource. Working in a model where both sending and listening for messages deplete energy, we consider the problem of finding a maximal matching of the nodes in a radio network of arbitrary and unknown topology. We present a distributed randomized algorithm that produces, with high probability, a maximal matching. The maximum energy cost per node is $O(\log^2 n)$, where $n$ is the size of the network. The total latency of our algorithm is $O(n \log n)$ time steps. We observe that there exist families of network topologies for which both of these bounds are simultaneously optimal up to polylog factors, so any significant improvement will require additional assumptions about the network topology. We also consider the related problem of assigning, for each node in the network, a neighbor to back up its data in case of node failure. Here, a key goal is to minimize the maximum load, defined as the number of nodes assigned to a single node. We present a decentralized low-energy algorithm that finds a neighbor assignment whose maximum load is at most a polylog($n$) factor bigger that the optimum.
We present the Sequential Aggregation and Rematerialization (SAR) scheme for distributed full-batch training of Graph Neural Networks (GNNs) on large graphs. Large-scale training of GNNs has recently been dominated by sampling-based methods and methods based on non-learnable message passing. SAR on the other hand is a distributed technique that can train any GNN type directly on an entire large graph. The key innovation in SAR is the distributed sequential rematerialization scheme which sequentially re-constructs then frees pieces of the prohibitively large GNN computational graph during the backward pass. This results in excellent memory scaling behavior where the memory consumption per worker goes down linearly with the number of workers, even for densely connected graphs. Using SAR, we report the largest applications of full-batch GNN training to-date, and demonstrate large memory savings as the number of workers increases. We also present a general technique based on kernel fusion and attention-matrix rematerialization to optimize both the runtime and memory efficiency of attention-based models. We show that, coupled with SAR, our optimized attention kernels lead to significant speedups and memory savings in attention-based GNNs.We made the SAR GNN training library publicy available: \url{//github.com/IntelLabs/SAR}.
Most existing works of polar codes focus on the analysis of block error probability. However, in many scenarios, bit error probability is also important for evaluating the performance of channel codes. In this paper, we establish a new framework to analyze the bit error probability of polar codes. Specifically, by revisiting the error event of bit-channel, we first introduce the conditional bit error probability as a metric to evaluate the reliability of bit-channel for both systematic and non-systematic polar codes. Guided by the concept of polar subcode, we then derive an upper bound on the conditional bit error probability of each bit-channel, and accordingly, an upper bound on the bit error probability of polar codes. Based on these, two types of construction metrics aiming at minimizing the bit error probability of polar codes are proposed, which are of linear computational complexity and explicit forms. Simulation results show that the polar codes constructed by the proposed methods can outperform those constructed by the conventional methods.
After spending 9 years in Quantum Computing and given the impending timeline of developing good quality quantum processing units, it is the moment to rethink the approach to advance quantum computing research. Rather than waiting for quantum hardware technologies to mature, we need to start assessing in tandem the impact of the occurrence of quantum computing in various scientific fields. However, for this purpose, we need to use a complementary but quite different approach than proposed by the NISQ vision, which is heavily focused on and burdened by the engineering challenges. That is why we propose and advocate the PISQ-approach: Perfect Intermediate-Scale Quantum computing based on the already known concept of perfect qubits. This will allow researchers to focus much more on the development of new applications by defining the algorithms in terms of perfect qubits and evaluating them on quantum computing simulators that are executed on supercomputers. It is not a long-term solution but it will allow universities to currently develop research on quantum logic and algorithms and companies can already start developing their internal know-how on quantum solutions.
Holonomic functions play an essential role in Computer Algebra since they allow the application of many symbolic algorithms. Among all algorithmic attempts to find formulas for power series, the holonomic property remains the most important requirement to be satisfied by the function under consideration. The targeted functions mainly summarize that of meromorphic functions. However, expressions like $\tan(z)$, $z/(\exp(z)-1)$, $\sec(z)$, etc., particularly, reciprocals, quotients and compositions of holonomic functions, are generally not holonomic. Therefore their power series are inaccessible by the holonomic framework. From the mathematical dictionaries, one can observe that most of the known closed-form formulas of non-holonomic power series involve another sequence whose evaluation depends on some finite summations. In the case of $\tan(z)$ and $\sec(z)$ the corresponding sequences are the Bernoulli and Euler numbers, respectively. Thus providing a symbolic approach that yields complete representations when linear summations for power series coefficients of non-holonomic functions appear, might be seen as a step forward towards the representation of non-holonomic power series. By adapting the method of ansatz with undetermined coefficients, we build an algorithm that computes least-order quadratic differential equations with polynomial coefficients for a large class of non-holonomic functions. A differential equation resulting from this procedure is converted into a recurrence equation by applying the Cauchy product formula and rewriting powers into polynomials and derivatives into shifts. Finally, using enough initial values we are able to give normal form representations to characterize several non-holonomic power series and prove non-trivial identities. We discuss this algorithm and its implementation for Maple 2022.
In the pooled data problem we are given a set of $n$ agents, each of which holds a hidden state bit, either $0$ or $1$. A querying procedure returns for a query set the sum of the states of the queried agents. The goal is to reconstruct the states using as few queries as possible. In this paper we consider two noise models for the pooled data problem. In the noisy channel model, the result for each agent flips with a certain probability. In the noisy query model, each query result is subject to random Gaussian noise. Our results are twofold. First, we present and analyze for both error models a simple and efficient distributed algorithm that reconstructs the initial states in a greedy fashion. Our novel analysis pins down the range of error probabilities and distributions for which our algorithm reconstructs the exact initial states with high probability. Secondly, we present simulation results of our algorithm and compare its performance with approximate message passing (AMP) algorithms that are conjectured to be optimal in a number of related problems.
This paper takes a different approach for the distributed linear parameter estimation over a multi-agent network. The parameter vector is considered to be stochastic with a Gaussian distribution. The sensor measurements at each agent are linear and corrupted with additive white Gaussian noise. Under such settings, this paper presents a novel distributed estimation algorithm that fuses the the concepts of consensus and innovations by incorporating the consensus terms (of neighboring estimates) into the innovation terms. Under the assumption of distributed parameter observability, introduced in this paper, we design the optimal gain matrices such that the distributed estimates are consistent and achieves fast convergence.