亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Gradient regularization, as described in \citet{barrett2021implicit}, is a highly effective technique for promoting flat minima during gradient descent. Empirical evidence suggests that this regularization technique can significantly enhance the robustness of deep learning models against noisy perturbations, while also reducing test error. In this paper, we explore the per-example gradient regularization (PEGR) and present a theoretical analysis that demonstrates its effectiveness in improving both test error and robustness against noise perturbations. Specifically, we adopt a signal-noise data model from \citet{cao2022benign} and show that PEGR can learn signals effectively while suppressing noise. In contrast, standard gradient descent struggles to distinguish the signal from the noise, leading to suboptimal generalization performance. Our analysis reveals that PEGR penalizes the variance of pattern learning, thus effectively suppressing the memorization of noises from the training data. These findings underscore the importance of variance control in deep learning training and offer useful insights for developing more effective training approaches.

相關內容

在數學,統(tong)計(ji)學和計(ji)算機科(ke)學中(zhong),尤其(qi)是在機器(qi)學習(xi)和逆問(wen)題(ti)中(zhong),正則(ze)化是添加信息(xi)以解決不適(shi)定問(wen)題(ti)或防止過(guo)度(du)擬合的(de)過(guo)程。 正則(ze)化適(shi)用于(yu)不適(shi)定的(de)優化問(wen)題(ti)中(zhong)的(de)目標函數。

Recently action recognition has received more and more attention for its comprehensive and practical applications in intelligent surveillance and human-computer interaction. However, few-shot action recognition has not been well explored and remains challenging because of data scarcity. In this paper, we propose a novel hierarchical compositional representations (HCR) learning approach for few-shot action recognition. Specifically, we divide a complicated action into several sub-actions by carefully designed hierarchical clustering and further decompose the sub-actions into more fine-grained spatially attentional sub-actions (SAS-actions). Although there exist large differences between base classes and novel classes, they can share similar patterns in sub-actions or SAS-actions. Furthermore, we adopt the Earth Mover's Distance in the transportation problem to measure the similarity between video samples in terms of sub-action representations. It computes the optimal matching flows between sub-actions as distance metric, which is favorable for comparing fine-grained patterns. Extensive experiments show our method achieves the state-of-the-art results on HMDB51, UCF101 and Kinetics datasets.

We introduce Multi-Objective Counterfactuals for Design (MCD), a novel method for counterfactual optimization in design problems. Counterfactuals are hypothetical situations that can lead to a different decision or choice. In this paper, the authors frame the counterfactual search problem as a design recommendation tool that can help identify modifications to a design, leading to better functional performance. MCD improves upon existing counterfactual search methods by supporting multi-objective queries, which are crucial in design problems, and by decoupling the counterfactual search and sampling processes, thus enhancing efficiency and facilitating objective tradeoff visualization. The paper demonstrates MCD's core functionality using a two-dimensional test case, followed by three case studies of bicycle design that showcase MCD's effectiveness in real-world design problems. In the first case study, MCD excels at recommending modifications to query designs that can significantly enhance functional performance, such as weight savings and improvements to the structural safety factor. The second case study demonstrates that MCD can work with a pre-trained language model to suggest design changes based on a subjective text prompt effectively. Lastly, the authors task MCD with increasing a query design's similarity to a target image and text prompt while simultaneously reducing weight and improving structural performance, demonstrating MCD's performance on a complex multimodal query. Overall, MCD has the potential to provide valuable recommendations for practitioners and design automation researchers looking for answers to their ``What if'' questions by exploring hypothetical design modifications and their impact on multiple design objectives. The code, test problems, and datasets used in the paper are available to the public at decode.mit.edu/projects/counterfactuals/.

Dense retrieval has shown promise in the first-stage retrieval process when trained on in-domain labeled datasets. However, previous studies have found that dense retrieval is hard to generalize to unseen domains due to its weak modeling of domain-invariant and interpretable feature (i.e., matching signal between two texts, which is the essence of information retrieval). In this paper, we propose a novel method to improve the generalization of dense retrieval via capturing matching signal called BERM. Fully fine-grained expression and query-oriented saliency are two properties of the matching signal. Thus, in BERM, a single passage is segmented into multiple units and two unit-level requirements are proposed for representation as the constraint in training to obtain the effective matching signal. One is semantic unit balance and the other is essential matching unit extractability. Unit-level view and balanced semantics make representation express the text in a fine-grained manner. Essential matching unit extractability makes passage representation sensitive to the given query to extract the pure matching information from the passage containing complex context. Experiments on BEIR show that our method can be effectively combined with different dense retrieval training methods (vanilla, hard negatives mining and knowledge distillation) to improve its generalization ability without any additional inference overhead and target domain data.

The trustworthiness of DNNs is often challenged by their vulnerability to minor adversarial perturbations, which may not only undermine prediction accuracy (robustness) but also cause biased predictions for similar inputs (individual fairness). Accurate fairness has been recently proposed to enforce a harmonic balance between accuracy and individual fairness. It induces the notion of fairness confusion matrix to categorize predictions as true fair, true biased, false fair, and false biased. This paper proposes a harmonic evaluation approach, RobustFair, for the accurate fairness of DNNs, using adversarial perturbations crafted through fairness confusion directed gradient search. By using Taylor expansions to approximate the ground truths of adversarial instances, RobustFair can particularly identify the robustness defects entangled for spurious fairness, which are often elusive in robustness evaluation, and missing in individual fairness evaluation. RobustFair can boost robustness and individual fairness evaluations by identifying robustness or fairness defects simultaneously. Empirical case studies on fairness benchmark datasets show that, compared with the state-of-the-art white-box robustness and individual fairness testing approaches, RobustFair detects significantly 1.77-11.87 times adversarial perturbations, yielding 1.83-13.12 times biased and 1.53-8.22 times false instances. The adversarial instances can then be effectively exploited to improve the accurate fairness (and hence accuracy and individual fairness) of the original deep neural network through retraining. The empirical case studies further show that the adversarial instances identified by RobustFair outperform those identified by the other testing approaches, in promoting 21% accurate fairness and 19% individual fairness on multiple sensitive attributes, without losing accuracy at all or even promoting it by up to 4%.

Diffusion Probability Models (DPMs) have made impressive advancements in various machine learning domains. However, achieving high-quality synthetic samples typically involves performing a large number of sampling steps, which impedes the possibility of real-time sample synthesis. Traditional accelerated sampling algorithms via knowledge distillation rely on pre-trained model weights and discrete time step scenarios, necessitating additional training sessions to achieve their goals. To address these issues, we propose the Catch-Up Distillation (CUD), which encourages the current moment output of the velocity estimation model ``catch up'' with its previous moment output. Specifically, CUD adjusts the original Ordinary Differential Equation (ODE) training objective to align the current moment output with both the ground truth label and the previous moment output, utilizing Runge-Kutta-based multi-step alignment distillation for precise ODE estimation while preventing asynchronous updates. Furthermore, we investigate the design space for CUDs under continuous time-step scenarios and analyze how to determine the suitable strategies. To demonstrate CUD's effectiveness, we conduct thorough ablation and comparison experiments on CIFAR-10, MNIST, and ImageNet-64. On CIFAR-10, we obtain a FID of 2.80 by sampling in 15 steps under one-session training and the new state-of-the-art FID of 3.37 by sampling in one step with additional training. This latter result necessitated only 62w iterations with a batch size of 128, in contrast to Consistency Distillation, which demanded 210w iterations with a larger batch size of 256.

We investigate the extent to which offline demonstration data can improve online learning. It is natural to expect some improvement, but the question is how, and by how much? We show that the degree of improvement must depend on the quality of the demonstration data. To generate portable insights, we focus on Thompson sampling (TS) applied to a multi-armed bandit as a prototypical online learning algorithm and model. The demonstration data is generated by an expert with a given competence level, a notion we introduce. We propose an informed TS algorithm that utilizes the demonstration data in a coherent way through Bayes' rule and derive a prior-dependent Bayesian regret bound. This offers insight into how pretraining can greatly improve online performance and how the degree of improvement increases with the expert's competence level. We also develop a practical, approximate informed TS algorithm through Bayesian bootstrapping and show substantial empirical regret reduction through experiments.

Finetuning pre-trained language models (LMs) enhances the models' capabilities. Prior techniques fine-tune a pre-trained LM on input-output pairs (e.g., instruction fine-tuning), or with numerical rewards that gauge the quality of its outputs (e.g., reinforcement learning from human feedback). We explore LMs' potential to learn from textual interactions (LeTI) that not only check their correctness with binary labels, but also pinpoint and explain errors in their outputs through textual feedback. Our investigation focuses on the code generation task, where the model produces code pieces in response to natural language instructions. This setting invites a natural and scalable way to acquire the textual feedback: the error messages and stack traces from code execution using a Python interpreter. LeTI iteratively fine-tunes the model, using the LM objective, on a concatenation of natural language instructions, LM-generated programs, and textual feedback, which is only provided when the generated program fails to solve the task. Prepended to this fine-tuning text, a binary reward token is used to differentiate correct and buggy solutions. On MBPP, a code generation dataset, LeTI substantially improves the performance of two base LMs of different scales. LeTI requires no ground-truth outputs for training and even outperforms a fine-tuned baseline that does. LeTI's strong performance generalizes to other datasets. Trained on MBPP, it achieves comparable or better performance than the base LMs on unseen problems in HumanEval. Furthermore, compared to binary feedback, we observe that textual feedback leads to improved generation quality and sample efficiency, achieving the same performance with fewer than half of the gradient steps. LeTI is equally applicable in natural language tasks when they can be formulated as code generation, which we empirically verified on event argument extraction.

Learning on big data brings success for artificial intelligence (AI), but the annotation and training costs are expensive. In future, learning on small data is one of the ultimate purposes of AI, which requires machines to recognize objectives and scenarios relying on small data as humans. A series of machine learning models is going on this way such as active learning, few-shot learning, deep clustering. However, there are few theoretical guarantees for their generalization performance. Moreover, most of their settings are passive, that is, the label distribution is explicitly controlled by one specified sampling scenario. This survey follows the agnostic active sampling under a PAC (Probably Approximately Correct) framework to analyze the generalization error and label complexity of learning on small data using a supervised and unsupervised fashion. With these theoretical analyses, we categorize the small data learning models from two geometric perspectives: the Euclidean and non-Euclidean (hyperbolic) mean representation, where their optimization solutions are also presented and discussed. Later, some potential learning scenarios that may benefit from small data learning are then summarized, and their potential learning scenarios are also analyzed. Finally, some challenging applications such as computer vision, natural language processing that may benefit from learning on small data are also surveyed.

It has been shown that deep neural networks are prone to overfitting on biased training data. Towards addressing this issue, meta-learning employs a meta model for correcting the training bias. Despite the promising performances, super slow training is currently the bottleneck in the meta learning approaches. In this paper, we introduce a novel Faster Meta Update Strategy (FaMUS) to replace the most expensive step in the meta gradient computation with a faster layer-wise approximation. We empirically find that FaMUS yields not only a reasonably accurate but also a low-variance approximation of the meta gradient. We conduct extensive experiments to verify the proposed method on two tasks. We show our method is able to save two-thirds of the training time while still maintaining the comparable or achieving even better generalization performance. In particular, our method achieves the state-of-the-art performance on both synthetic and realistic noisy labels, and obtains promising performance on long-tailed recognition on standard benchmarks.

Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these networks. Motivated by this observation, we develop new network architectures that increase adversarial robustness by performing feature denoising. Specifically, our networks contain blocks that denoise the features using non-local means or other filters; the entire networks are trained end-to-end. When combined with adversarial training, our feature denoising networks substantially improve the state-of-the-art in adversarial robustness in both white-box and black-box attack settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration PGD white-box attacks, our method secures 42.6% accuracy. A network based on our method was ranked first in Competition on Adversarial Attacks and Defenses (CAAD) 2018 --- it achieved 50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 unknown attackers, surpassing the runner-up approach by ~10%. Code and models will be made publicly available.

北京阿比特科技有限公司