Motivated by international energy trade between countries with profit-maximizing domestic producers, we analyze Nash games played among Stackelberg games leaders ($NASP$). In particular, we focus on $NASPs$ where each leader program is a linear bilevel with quadratic convex followers, and we assume the standard optimistic version of such bilevels. We prove it is both $\Sigma^p_2$-hard to decide if the game has a pure-strategy ($PNE$) or a mixed-strategy Nash equilibrium ($MNE$). We provide a finite algorithm that computes exact $MNEs$ for $NASPs$ when there is at least one or returns a certificate if no $MNE$ exists. To enhance computational speed, we introduce an inner approximation hierarchy that increasingly grows the description of each Stackelberg leader feasible region. Furthermore, we extend the algorithmic framework to retrieve a $PNE$ if one exists specifically. Finally, we provide computational tests on a range of $NASPs$ instances inspired by international energy trades.
We consider online sequential decision problems where an agent must balance exploration and exploitation. We derive a set of Bayesian `optimistic' policies which, in the stochastic multi-armed bandit case, includes the Thompson sampling policy. We provide a new analysis showing that any algorithm producing policies in the optimistic set enjoys $\tilde O(\sqrt{AT})$ Bayesian regret for a problem with $A$ actions after $T$ rounds. We extend the regret analysis for optimistic policies to bilinear saddle-point problems which include zero-sum matrix games and constrained bandits as special cases. In this case we show that Thompson sampling can produce policies outside of the optimistic set and suffer linear regret in some instances. Finding a policy inside the optimistic set amounts to solving a convex optimization problem and we call the resulting algorithm `variational Bayesian optimistic sampling' (VBOS). The procedure works for any posteriors, \ie, it does not require the posterior to have any special properties, such as log-concavity, unimodality, or smoothness. The variational view of the problem has many useful properties, including the ability to tune the exploration-exploitation tradeoff, add regularization, incorporate constraints, and linearly parameterize the policy.
We study the problem of online facility location with delay. In this problem, a sequence of $n$ clients appear in the metric space, and they need to be eventually connected to some open facility. The clients do not have to be connected immediately, but such a choice comes with a penalty: each client incurs a waiting cost (the difference between its arrival and connection time). At any point in time, an algorithm may decide to open a facility and connect any subset of clients to it. This is a well-studied problem both of its own, and within the general class of network design problems with delays. Our main focus is on a new variant of this problem, where clients may be connected also to an already open facility, but such action incurs an extra cost: an algorithm pays for waiting of the facility (a cost incurred separately for each such "late" connection). This is reminiscent of online matching with delays, where both sides of the connection incur a waiting cost. We call this variant two-sided delay to differentiate it from the previously studied one-sided delay. We present an $O(1)$-competitive deterministic algorithm for the two-sided delay variant. On the technical side, we study a greedy strategy, which grows budgets with increasing waiting delays and opens facilities for subsets of clients once sums of these budgets reach certain thresholds. Our technique is a substantial extension of the approach used by Jain, Mahdian and Saberi [STOC 2002] for analyzing the performance of offline algorithms for facility location. We then show how to transform our $O(1)$-competitive algorithm for the two-sided delay variant to $O(\log n / \log \log n)$-competitive deterministic algorithm for one-sided delays. We note that all previous online algorithms for problems with delays in general metrics have at least logarithmic ratios.
Strategic behavior against sequential learning methods, such as "click framing" in real recommendation systems, have been widely observed. Motivated by such behavior we study the problem of combinatorial multi-armed bandits (CMAB) under strategic manipulations of rewards, where each arm can modify the emitted reward signals for its own interest. This characterization of the adversarial behavior is a relaxation of previously well-studied settings such as adversarial attacks and adversarial corruption. We propose a strategic variant of the combinatorial UCB algorithm, which has a regret of at most $O(m\log T + m B_{max})$ under strategic manipulations, where $T$ is the time horizon, $m$ is the number of arms, and $B_{max}$ is the maximum budget of an arm. We provide lower bounds on the budget for arms to incur certain regret of the bandit algorithm. Extensive experiments on online worker selection for crowdsourcing systems, online influence maximization and online recommendations with both synthetic and real datasets corroborate our theoretical findings on robustness and regret bounds, in a variety of regimes of manipulation budgets.
We consider robust variants of the standard optimal transport, named robust optimal transport, where marginal constraints are relaxed via Kullback-Leibler divergence. We show that Sinkhorn-based algorithms can approximate the optimal cost of robust optimal transport in $\widetilde{\mathcal{O}}(\frac{n^2}{\varepsilon})$ time, in which $n$ is the number of supports of the probability distributions and $\varepsilon$ is the desired error. Furthermore, we investigate a fixed-support robust barycenter problem between $m$ discrete probability distributions with at most $n$ number of supports and develop an approximating algorithm based on iterative Bregman projections (IBP). For the specific case $m = 2$, we show that this algorithm can approximate the optimal barycenter value in $\widetilde{\mathcal{O}}(\frac{mn^2}{\varepsilon})$ time, thus being better than the previous complexity $\widetilde{\mathcal{O}}(\frac{mn^2}{\varepsilon^2})$ of the IBP algorithm for approximating the Wasserstein barycenter.
This paper studies the difficulty of discriminating quantum channels under operational regimes, proves the quantum channel Stein's lemma (strong converse part), and provides a unified framework to show the operational meaning of quantum channel divergences. First, we establish the exponentially strong converse of quantum channel hypothesis testing under coherent strategies, meaning that any strategy to make the Type II error decays with an exponent larger than the regularized channel relative entropy will unavoidably result in the Type I error converging to one exponentially fast in the asymptotic limit. This result notably delivers the desirable quantum channel Stein's Lemma, enclosing a long-term open problem in quantum information theory. As a byproduct, we show the continuity of the regularized (amortized) Sandwiched R\'{e}nyi channel divergence at $\alpha=1$, resolving another open problem in the field. Second, we develop a framework to show the interplay between the strategies of channel discrimination, the operational regimes, and variants of channel divergences. This framework systematically underlies the operational meaning of quantum channel divergences in quantum channel discrimination. Our work establishes the ultimate limit of quantum channel discrimination, deepening our understanding of quantum channel discrimination and quantum channel divergences in the asymptotic regime. As quantum channel discrimination is strongly connected to many other fundamental tasks in quantum information theory, we expect plentiful applications on related topics such as quantum metrology and quantum communication.
In the negative perceptron problem we are given $n$ data points $({\boldsymbol x}_i,y_i)$, where ${\boldsymbol x}_i$ is a $d$-dimensional vector and $y_i\in\{+1,-1\}$ is a binary label. The data are not linearly separable and hence we content ourselves to find a linear classifier with the largest possible \emph{negative} margin. In other words, we want to find a unit norm vector ${\boldsymbol \theta}$ that maximizes $\min_{i\le n}y_i\langle {\boldsymbol \theta},{\boldsymbol x}_i\rangle$. This is a non-convex optimization problem (it is equivalent to finding a maximum norm vector in a polytope), and we study its typical properties under two random models for the data. We consider the proportional asymptotics in which $n,d\to \infty$ with $n/d\to\delta$, and prove upper and lower bounds on the maximum margin $\kappa_{\text{s}}(\delta)$ or -- equivalently -- on its inverse function $\delta_{\text{s}}(\kappa)$. In other words, $\delta_{\text{s}}(\kappa)$ is the overparametrization threshold: for $n/d\le \delta_{\text{s}}(\kappa)-\varepsilon$ a classifier achieving vanishing training error exists with high probability, while for $n/d\ge \delta_{\text{s}}(\kappa)+\varepsilon$ it does not. Our bounds on $\delta_{\text{s}}(\kappa)$ match to the leading order as $\kappa\to -\infty$. We then analyze a linear programming algorithm to find a solution, and characterize the corresponding threshold $\delta_{\text{lin}}(\kappa)$. We observe a gap between the interpolation threshold $\delta_{\text{s}}(\kappa)$ and the linear programming threshold $\delta_{\text{lin}}(\kappa)$, raising the question of the behavior of other algorithms.
Adversarial training is among the most effective techniques to improve the robustness of models against adversarial perturbations. However, the full effect of this approach on models is not well understood. For example, while adversarial training can reduce the adversarial risk (prediction error against an adversary), it sometimes increase standard risk (generalization error when there is no adversary). Even more, such behavior is impacted by various elements of the learning problem, including the size and quality of training data, specific forms of adversarial perturbations in the input, model overparameterization, and adversary's power, among others. In this paper, we focus on \emph{distribution perturbing} adversary framework wherein the adversary can change the test distribution within a neighborhood of the training data distribution. The neighborhood is defined via Wasserstein distance between distributions and the radius of the neighborhood is a measure of adversary's manipulative power. We study the tradeoff between standard risk and adversarial risk and derive the Pareto-optimal tradeoff, achievable over specific classes of models, in the infinite data limit with features dimension kept fixed. We consider three learning settings: 1) Regression with the class of linear models; 2) Binary classification under the Gaussian mixtures data model, with the class of linear classifiers; 3) Regression with the class of random features model (which can be equivalently represented as two-layer neural network with random first-layer weights). We show that a tradeoff between standard and adversarial risk is manifested in all three settings. We further characterize the Pareto-optimal tradeoff curves and discuss how a variety of factors, such as features correlation, adversary's power or the width of two-layer neural network would affect this tradeoff.
Exploration-exploitation is a powerful and practical tool in multi-agent learning (MAL), however, its effects are far from understood. To make progress in this direction, we study a smooth analogue of Q-learning. We start by showing that our learning model has strong theoretical justification as an optimal model for studying exploration-exploitation. Specifically, we prove that smooth Q-learning has bounded regret in arbitrary games for a cost model that explicitly captures the balance between game and exploration costs and that it always converges to the set of quantal-response equilibria (QRE), the standard solution concept for games under bounded rationality, in weighted potential games with heterogeneous learning agents. In our main task, we then turn to measure the effect of exploration in collective system performance. We characterize the geometry of the QRE surface in low-dimensional MAL systems and link our findings with catastrophe (bifurcation) theory. In particular, as the exploration hyperparameter evolves over-time, the system undergoes phase transitions where the number and stability of equilibria can change radically given an infinitesimal change to the exploration parameter. Based on this, we provide a formal theoretical treatment of how tuning the exploration parameter can provably lead to equilibrium selection with both positive as well as negative (and potentially unbounded) effects to system performance.
The problem of Approximate Nearest Neighbor (ANN) search is fundamental in computer science and has benefited from significant progress in the past couple of decades. However, most work has been devoted to pointsets whereas complex shapes have not been sufficiently treated. Here, we focus on distance functions between discretized curves in Euclidean space: they appear in a wide range of applications, from road segments to time-series in general dimension. For $\ell_p$-products of Euclidean metrics, for any $p$, we design simple and efficient data structures for ANN, based on randomized projections, which are of independent interest. They serve to solve proximity problems under a notion of distance between discretized curves, which generalizes both discrete Fr\'echet and Dynamic Time Warping distances. These are the most popular and practical approaches to comparing such curves. We offer the first data structures and query algorithms for ANN with arbitrarily good approximation factor, at the expense of increasing space usage and preprocessing time over existing methods. Query time complexity is comparable or significantly improved by our algorithms, our algorithm is especially efficient when the length of the curves is bounded.
In this paper we study the convergence of generative adversarial networks (GANs) from the perspective of the informativeness of the gradient of the optimal discriminative function. We show that GANs without restriction on the discriminative function space commonly suffer from the problem that the gradient produced by the discriminator is uninformative to guide the generator. By contrast, Wasserstein GAN (WGAN), where the discriminative function is restricted to $1$-Lipschitz, does not suffer from such a gradient uninformativeness problem. We further show in the paper that the model with a compact dual form of Wasserstein distance, where the Lipschitz condition is relaxed, also suffers from this issue. This implies the importance of Lipschitz condition and motivates us to study the general formulation of GANs with Lipschitz constraint, which leads to a new family of GANs that we call Lipschitz GANs (LGANs). We show that LGANs guarantee the existence and uniqueness of the optimal discriminative function as well as the existence of a unique Nash equilibrium. We prove that LGANs are generally capable of eliminating the gradient uninformativeness problem. According to our empirical analysis, LGANs are more stable and generate consistently higher quality samples compared with WGAN.