Selecting the step size for the Metropolis-adjusted Langevin algorithm (MALA) is necessary in order to obtain satisfactory performance. However, finding an adequate step size for an arbitrary target distribution can be a difficult task and even the best step size can perform poorly in specific regions of the space when the target distribution is sufficiently complex. To resolve this issue we introduce autoMALA, a new Markov chain Monte Carlo algorithm based on MALA that automatically sets its step size at each iteration based on the local geometry of the target distribution. We prove that autoMALA has the correct invariant distribution, despite continual automatic adjustments of the step size. Our experiments demonstrate that autoMALA is competitive with related state-of-the-art MCMC methods, in terms of the number of log density evaluations per effective sample, and it outperforms state-of-the-art samplers on targets with varying geometries. Furthermore, we find that autoMALA tends to find step sizes comparable to optimally-tuned MALA when a fixed step size suffices for the whole domain.
Multi-Scale and U-shaped Networks are widely used in various image restoration problems, including deblurring. Keeping in mind the wide range of applications, we present a comparison of these architectures and their effects on image deblurring. We also introduce a new block called as NFResblock. It consists of a Fast Fourier Transformation layer and a series of modified Non-Linear Activation Free Blocks. Based on these architectures and additions, we introduce NFResnet and NFResnet+, which are modified multi-scale and U-Net architectures, respectively. We also use three different loss functions to train these architectures: Charbonnier Loss, Edge Loss, and Frequency Reconstruction Loss. Extensive experiments on the Deep Video Deblurring dataset, along with ablation studies for each component, have been presented in this paper. The proposed architectures achieve a considerable increase in Peak Signal to Noise (PSNR) ratio and Structural Similarity Index (SSIM) value.
Numerical analysis for the stochastic Stokes equations is still challenging even though it has been well done for the corresponding deterministic equations. In particular, the pre-existing error estimates of finite element methods for the stochastic Stokes equations { in the $L^\infty(0, T; L^2(\Omega; L^2))$ norm} all suffer from the order reduction with respect to the spatial discretizations. The best convergence result obtained for these fully discrete schemes is only half-order in time and first-order in space, which is not optimal in space in the traditional sense. The objective of this article is to establish strong convergence of $O(\tau^{1/2}+ h^2)$ in the $L^\infty(0, T; L^2(\Omega; L^2))$ norm for approximating the velocity, and strong convergence of $O(\tau^{1/2}+ h)$ in the $L^{\infty}(0, T;L^2(\Omega;L^2))$ norm for approximating the time integral of pressure, where $\tau$ and $h$ denote the temporal step size and spatial mesh size, respectively. The error estimates are of optimal order for the spatial discretization considered in this article (with MINI element), and consistent with the numerical experiments. The analysis is based on the fully discrete Stokes semigroup technique and the corresponding new estimates.
This article describes a lightweight additive homomorphic algorithm with the same encryption and decryption keys. Compared to standard additive homomorphic algorithms like Paillier, this algorithm reduces the computational cost of encryption and decryption from modular exponentiation to modular multiplication, and reduces the computational cost of ciphertext addition from modular multiplication to modular addition. This algorithm is based on a new mathematical problem: in two division operations, whether it is possible to infer the remainder or divisor based on the dividend when two remainders are related. Currently, it is not obvious how to break this problem, but further exploration is needed to determine if it is sufficiently difficult. In addition to this mathematical problem, we have also designed two interesting mathematical structures for decryption, which are used in the two algorithms mentioned in the main text. It is possible that the decryption structure of Algorithm 2 introduces new security vulnerabilities, but we have not investigated this issue thoroughly.
Neural operators have been validated as promising deep surrogate models for solving partial differential equations (PDEs). Despite the critical role of boundary conditions in PDEs, however, only a limited number of neural operators robustly enforce these conditions. In this paper we introduce semi-periodic Fourier neural operator (SPFNO), a novel spectral operator learning method, to learn the target operators of PDEs with non-periodic BCs. This method extends our previous work (arXiv:2206.12698), which showed significant improvements by employing enhanced neural operators that precisely satisfy the boundary conditions. However, the previous work is associated with Gaussian grids, restricting comprehensive comparisons across most public datasets. Additionally, we present numerical results for various PDEs such as the viscous Burgers' equation, Darcy flow, incompressible pipe flow, and coupled reactiondiffusion equations. These results demonstrate the computational efficiency, resolution invariant property, and BC-satisfaction behavior of proposed model. An accuracy improvement of approximately 1.7X-4.7X over the non-BC-satisfying baselines is also achieved. Furthermore, our studies on SOL underscore the significance of satisfying BCs as a criterion for deep surrogate models of PDEs.
In Gaussian graphical models, the likelihood equations must typically be solved iteratively. We investigate two algorithms: A version of iterative proportional scaling which avoids inversion of large matrices, and an algorithm based on convex duality and operating on the covariance matrix by neighbourhood coordinate descent, corresponding to the graphical lasso with zero penalty. For large, sparse graphs, the iterative proportional scaling algorithm appears feasible and has simple convergence properties. The algorithm based on neighbourhood coordinate descent is extremely fast and less dependent on sparsity, but needs a positive definite starting value to converge. We give an algorithm for finding such a starting value for graphs with low colouring number. As a consequence, we also obtain a simplified proof for existence of the maximum likelihood estimator in such cases.
In this work we consider the two dimensional instationary Navier-Stokes equations with homogeneous Dirichlet/no-slip boundary conditions. We show error estimates for the fully discrete problem, where a discontinuous Galerkin method in time and inf-sup stable finite elements in space are used. Recently, best approximation type error estimates for the Stokes problem in the $L^\infty(I;L^2(\Omega))$, $L^2(I;H^1(\Omega))$ and $L^2(I;L^2(\Omega))$ norms have been shown. The main result of the present work extends the error estimate in the $L^\infty(I;L^2(\Omega))$ norm to the Navier-Stokes equations, by pursuing an error splitting approach and an appropriate duality argument. In order to discuss the stability of solutions to the discrete primal and dual equations, a specially tailored discrete Gronwall lemma is presented. The techniques developed towards showing the $L^\infty(I;L^2(\Omega))$ error estimate, also allow us to show best approximation type error estimates in the $L^2(I;H^1(\Omega))$ and $L^2(I;L^2(\Omega))$ norms, which complement this work.
We present a parallel algorithm for the fast Fourier transform (FFT) in higher dimensions. This algorithm generalizes the cyclic-to-cyclic one-dimensional parallel algorithm to a cyclic-to-cyclic multidimensional parallel algorithm while retaining the property of needing only a single all-to-all communication step. This is under the constraint that we use at most $\sqrt{N}$ processors for an FFT on an array with a total of $N$ elements, irrespective of the dimension $d$ or the shape of the array. The only assumption we make is that $N$ is sufficiently composite. Our algorithm starts and ends in the same data distribution. We present our multidimensional implementation FFTU which utilizes the sequential FFTW program for its local FFTs, and which can handle any dimension $d$. We obtain experimental results for $d\leq 5$ using MPI on up to 4096 cores of the supercomputer Snellius, comparing FFTU with the parallel FFTW program and with PFFT and heFFTe. These results show that FFTU is competitive with the state of the art and that it allows one to use a larger number of processors, while keeping communication limited to a single all-to-all operation. For arrays of size $1024^3$ and $64^5$, FFTU achieves a speedup of a factor 149 and 176, respectively, on 4096 processors.
We analyze the anti-symmetric properties of spectral discretization for the one-dimensional Vlasov-Poisson equations. The discretization is based on a spectral expansion in velocity with the symmetrically weighted Hermite basis functions, central finite differencing in space, and an implicit Runge Kutta integrator in time. The proposed discretization preserves the anti-symmetric structure of the advection operator in the Vlasov equation, resulting in a stable numerical method. We apply such discretization to two formulations: the canonical Vlasov-Poisson equations and their continuously transformed square-root representation. The latter preserves the positivity of the particle distribution function. We derive analytically the conservation properties of both formulations, including particle number, momentum, and energy, which are verified numerically on the following benchmark problems: manufactured solution, linear and nonlinear Landau damping, two-stream instability, and bump-on-tail instability.
Finite-dimensional truncations are routinely used to approximate partial differential equations (PDEs), either to obtain numerical solutions or to derive reduced-order models. The resulting discretized equations are known to violate certain physical properties of the system. In particular, first integrals of the PDE may not remain invariant after discretization. Here, we use the method of reduced-order nonlinear solutions (RONS) to ensure that the conserved quantities of the PDE survive its finite-dimensional truncation. In particular, we develop two methods: Galerkin RONS and finite volume RONS. Galerkin RONS ensures the conservation of first integrals in Galerkin-type truncations, whether used for direct numerical simulations or reduced-order modeling. Similarly, finite volume RONS conserves any number of first integrals of the system, including its total energy, after finite volume discretization. Both methods are applicable to general time-dependent PDEs and can be easily incorporated in existing Galerkin-type or finite volume code. We demonstrate the efficacy of our methods on two examples: direct numerical simulations of the shallow water equation and a reduced-order model of the nonlinear Schrodinger equation. As a byproduct, we also generalize RONS to phenomena described by a system of PDEs.
The satisfiability problem is NP-complete but there are subclasses where all the instances are satisfiable. For this, restrictions on the shape of the formula are made. Darman and D\"ocker show that the subclass MONOTONE $3$-SAT-($k$,1) with $k \geq 5$ proves to be NP-complete and pose the open question whether instances of MONOTONE $3$-SAT-(3,1) are satisfiable. This paper shows that all instances of MONOTONE $3$-SAT-(3,1) are satisfiable using the new concept of a color-structures.