亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Neural operators have been validated as promising deep surrogate models for solving partial differential equations (PDEs). Despite the critical role of boundary conditions in PDEs, however, only a limited number of neural operators robustly enforce these conditions. In this paper we introduce semi-periodic Fourier neural operator (SPFNO), a novel spectral operator learning method, to learn the target operators of PDEs with non-periodic BCs. This method extends our previous work (arXiv:2206.12698), which showed significant improvements by employing enhanced neural operators that precisely satisfy the boundary conditions. However, the previous work is associated with Gaussian grids, restricting comprehensive comparisons across most public datasets. Additionally, we present numerical results for various PDEs such as the viscous Burgers' equation, Darcy flow, incompressible pipe flow, and coupled reactiondiffusion equations. These results demonstrate the computational efficiency, resolution invariant property, and BC-satisfaction behavior of proposed model. An accuracy improvement of approximately 1.7X-4.7X over the non-BC-satisfying baselines is also achieved. Furthermore, our studies on SOL underscore the significance of satisfying BCs as a criterion for deep surrogate models of PDEs.

相關內容

Partial differential equations (PDEs) have become an essential tool for modeling complex physical systems. Such equations are typically solved numerically via mesh-based methods, such as finite element methods, with solutions over the spatial domain. However, obtaining these solutions are often prohibitively costly, limiting the feasibility of exploring parameters in PDEs. In this paper, we propose an efficient emulator that simultaneously predicts the solutions over the spatial domain, with theoretical justification of its uncertainty quantification. The novelty of the proposed method lies in the incorporation of the mesh node coordinates into the statistical model. In particular, the proposed method segments the mesh nodes into multiple clusters via a Dirichlet process prior and fits Gaussian process models with the same hyperparameters in each of them. Most importantly, by revealing the underlying clustering structures, the proposed method can provide valuable insights into qualitative features of the resulting dynamics that can be used to guide further investigations. Real examples are demonstrated to show that our proposed method has smaller prediction errors than its main competitors, with competitive computation time, and identifies interesting clusters of mesh nodes that possess physical significance, such as satisfying boundary conditions. An R package for the proposed methodology is provided in an open repository.

We prove sharp bounds on certain impedance-to-impedance maps (and their compositions) for the Helmholtz equation with large wavenumber (i.e., at high-frequency) using semiclassical defect measures. The paper [GGGLS] (Gong-Gander-Graham-Lafontaine-Spence, 2022) recently showed that the behaviour of these impedance-to-impedance maps (and their compositions) dictates the convergence of the parallel overlapping Schwarz domain-decomposition method with impedance boundary conditions on the subdomain boundaries. For a model decomposition with two subdomains and sufficiently-large overlap, the results of this paper combined with those in [GGGLS] show that the parallel Schwarz method is power contractive, independent of the wavenumber. For strip-type decompositions with many subdomains, the results of this paper show that the composite impedance-to-impedance maps, in general, behave "badly" with respect to the wavenumber; nevertheless, by proving results about the composite maps applied to a restricted class of data, we give insight into the wavenumber-robustness of the parallel Schwarz method observed in the numerical experiments in [GGGLS].

Neural operators (NO) are discretization invariant deep learning methods with functional output and can approximate any continuous operator. NO have demonstrated the superiority of solving partial differential equations (PDEs) over other deep learning methods. However, the spatial domain of its input function needs to be identical to its output, which limits its applicability. For instance, the widely used Fourier neural operator (FNO) fails to approximate the operator that maps the boundary condition to the PDE solution. To address this issue, we propose a novel framework called resolution-invariant deep operator (RDO) that decouples the spatial domain of the input and output. RDO is motivated by the Deep operator network (DeepONet) and it does not require retraining the network when the input/output is changed compared with DeepONet. RDO takes functional input and its output is also functional so that it keeps the resolution invariant property of NO. It can also resolve PDEs with complex geometries whereas NO fail. Various numerical experiments demonstrate the advantage of our method over DeepONet and FNO.

An adaptive method for parabolic partial differential equations that combines sparse wavelet expansions in time with adaptive low-rank approximations in the spatial variables is constructed and analyzed. The method is shown to converge and satisfy similar complexity bounds as existing adaptive low-rank methods for elliptic problems, establishing its suitability for parabolic problems on high-dimensional spatial domains. The construction also yields computable rigorous a posteriori error bounds for such problems. The results are illustrated by numerical experiments.

Several physical problems modeled by second-order elliptic equations can be efficiently solved using mixed finite elements of the Raviart-Thomas family RTk for N-simplexes, introduced in the seventies. In case Neumann conditions are prescribed on a curvilinear boundary, the normal component of the flux variable should preferably not take up values at nodes shifted to the boundary of the approximating polytope in the corresponding normal direction. This is because the method's accuracy downgrades, which was shown in previous papers by the first author et al. In that work an order-preserving technique was studied, based on a parametric version of these elements with curved simplexes. In this article an alternative with straight-edged triangles for two-dimensional problems is proposed. The key point of this method is a Petrov-Galerkin formulation of the mixed problem, in which the test-flux space is a little different from the shape-flux space. After describing the underlying variant of RTk we show that it gives rise to a uniformly stable and optimally convergent method, taking the Poisson equation as a model problem.

Latitude on the choice of initialisation is a shared feature between one-step extended state-space and multi-step methods. The paper focuses on lattice Boltzmann schemes, which can be interpreted as examples of both previous categories of numerical schemes. We propose a modified equation analysis of the initialisation schemes for lattice Boltzmann methods, determined by the choice of initial data. These modified equations provide guidelines to devise and analyze the initialisation in terms of order of consistency with respect to the target Cauchy problem and time smoothness of the numerical solution. In detail, the larger the number of matched terms between modified equations for initialisation and bulk methods, the smoother the obtained numerical solution. This is particularly manifest for numerical dissipation. Starting from the constraints to achieve time smoothness, which can quickly become prohibitive for they have to take the parasitic modes into consideration, we explain how the distinct lack of observability for certain lattice Boltzmann schemes -- seen as dynamical systems on a commutative ring -- can yield rather simple conditions and be easily studied as far as their initialisation is concerned. This comes from the reduced number of initialisation schemes at the fully discrete level. These theoretical results are successfully assessed on several lattice Boltzmann methods.

We propose a new numerical domain decomposition method for solving elliptic equations on compact Riemannian manifolds. One advantage of this method is its ability to bypass the need for global triangulations or grids on the manifolds. Additionally, it features a highly parallel iterative scheme. To verify its efficacy, we conduct numerical experiments on some $4$-dimensional manifolds without and with boundary.

Diffusion models have recently emerged as a promising framework for Image Restoration (IR), owing to their ability to produce high-quality reconstructions and their compatibility with established methods. Existing methods for solving noisy inverse problems in IR, considers the pixel-wise data-fidelity. In this paper, we propose SaFaRI, a spatial-and-frequency-aware diffusion model for IR with Gaussian noise. Our model encourages images to preserve data-fidelity in both the spatial and frequency domains, resulting in enhanced reconstruction quality. We comprehensively evaluate the performance of our model on a variety of noisy inverse problems, including inpainting, denoising, and super-resolution. Our thorough evaluation demonstrates that SaFaRI achieves state-of-the-art performance on both the ImageNet datasets and FFHQ datasets, outperforming existing zero-shot IR methods in terms of LPIPS and FID metrics.

Solving high dimensional partial differential equations (PDEs) has historically posed a considerable challenge when utilizing conventional numerical methods, such as those involving domain meshes. Recent advancements in the field have seen the emergence of neural PDE solvers, leveraging deep networks to effectively tackle high dimensional PDE problems. This study introduces Inf-SupNet, a model-based unsupervised learning approach designed to acquire solutions for a specific category of elliptic PDEs. The fundamental concept behind Inf-SupNet involves incorporating the inf-sup formulation of the underlying PDE into the loss function. The analysis reveals that the global solution error can be bounded by the sum of three distinct errors: the numerical integration error, the duality gap of the loss function (training error), and the neural network approximation error for functions within Sobolev spaces. To validate the efficacy of the proposed method, numerical experiments conducted in high dimensions demonstrate its stability and accuracy across various boundary conditions, as well as for both semi-linear and nonlinear PDEs.

We introduce a general abstract framework for database repairing in which the repair notions are defined using formal logic. We differentiate between integrity constraints and the so-called query constraints. The former are used to model consistency and desirable properties of the data (such as functional dependencies and independencies), while the latter relates two database instances according to their answers for the query constraints. The framework also admits a distinction between hard and soft queries, allowing to preserve the answers of a core set of queries as well as defining a distance between instances based on query answers. We exemplify how various notions of repairs from the literature can be modelled in our unifying framework. Furthermore, we initiate a complexity-theoretic analysis of the problems of consistent query answering, repair computation, and existence of repair within the new framework. We present both coNP- and NP-hard cases that illustrate the interplay between computationally hard problems and more flexible repair notions. We show general upper bounds in NP and the second level of the polynomial hierarchy. Finally, we relate the existence of a repair to model checking of existential second-order logic.

北京阿比特科技有限公司