With ever growing scale of neural models, knowledge distillation (KD) attracts more attention as a prominent tool for neural model compression. However, there are counter intuitive observations in the literature showing some challenging limitations of KD. A case in point is that the best performing checkpoint of the teacher might not necessarily be the best teacher for training the student in KD. Therefore, one important question would be how to find the best checkpoint of the teacher for distillation? Searching through the checkpoints of the teacher would be a very tedious and computationally expensive process, which we refer to as the \textit{checkpoint-search problem}. Moreover, another observation is that larger teachers might not necessarily be better teachers in KD which is referred to as the \textit{capacity-gap} problem. To address these challenging problems, in this work, we introduce our progressive knowledge distillation (Pro-KD) technique which defines a smoother training path for the student by following the training footprints of the teacher instead of solely relying on distilling from a single mature fully-trained teacher. We demonstrate that our technique is quite effective in mitigating the capacity-gap problem and the checkpoint search problem. We evaluate our technique using a comprehensive set of experiments on different tasks such as image classification (CIFAR-10 and CIFAR-100), natural language understanding tasks of the GLUE benchmark, and question answering (SQuAD 1.1 and 2.0) using BERT-based models and consistently got superior results over state-of-the-art techniques.
While self-supervised representation learning (SSL) has proved to be effective in the large model, there is still a huge gap between the SSL and supervised method in the lightweight model when following the same solution. We delve into this problem and find that the lightweight model is prone to collapse in semantic space when simply performing instance-wise contrast. To address this issue, we propose a relation-wise contrastive paradigm with Relation Knowledge Distillation (ReKD). We introduce a heterogeneous teacher to explicitly mine the semantic information and transferring a novel relation knowledge to the student (lightweight model). The theoretical analysis supports our main concern about instance-wise contrast and verify the effectiveness of our relation-wise contrastive learning. Extensive experimental results also demonstrate that our method achieves significant improvements on multiple lightweight models. Particularly, the linear evaluation on AlexNet obviously improves the current state-of-art from 44.7% to 50.1%, which is the first work to get close to the supervised 50.5%. Code will be made available.
Recommender Systems (RS) have employed knowledge distillation which is a model compression technique training a compact student model with the knowledge transferred from a pre-trained large teacher model. Recent work has shown that transferring knowledge from the teacher's intermediate layer significantly improves the recommendation quality of the student. However, they transfer the knowledge of individual representation point-wise and thus have a limitation in that primary information of RS lies in the relations in the representation space. This paper proposes a new topology distillation approach that guides the student by transferring the topological structure built upon the relations in the teacher space. We first observe that simply making the student learn the whole topological structure is not always effective and even degrades the student's performance. We demonstrate that because the capacity of the student is highly limited compared to that of the teacher, learning the whole topological structure is daunting for the student. To address this issue, we propose a novel method named Hierarchical Topology Distillation (HTD) which distills the topology hierarchically to cope with the large capacity gap. Our extensive experiments on real-world datasets show that the proposed method significantly outperforms the state-of-the-art competitors. We also provide in-depth analyses to ascertain the benefit of distilling the topology for RS.
The pre-training models such as BERT have achieved great results in various natural language processing problems. However, a large number of parameters need significant amounts of memory and the consumption of inference time, which makes it difficult to deploy them on edge devices. In this work, we propose a knowledge distillation method LRC-BERT based on contrastive learning to fit the output of the intermediate layer from the angular distance aspect, which is not considered by the existing distillation methods. Furthermore, we introduce a gradient perturbation-based training architecture in the training phase to increase the robustness of LRC-BERT, which is the first attempt in knowledge distillation. Additionally, in order to better capture the distribution characteristics of the intermediate layer, we design a two-stage training method for the total distillation loss. Finally, by verifying 8 datasets on the General Language Understanding Evaluation (GLUE) benchmark, the performance of the proposed LRC-BERT exceeds the existing state-of-the-art methods, which proves the effectiveness of our method.
Knowledge distillation has demonstrated encouraging performances in deep model compression. Most existing approaches, however, require massive labeled data to accomplish the knowledge transfer, making the model compression a cumbersome and costly process. In this paper, we investigate the practical few-shot knowledge distillation scenario, where we assume only a few samples without human annotations are available for each category. To this end, we introduce a principled dual-stage distillation scheme tailored for few-shot data. In the first step, we graft the student blocks one by one onto the teacher, and learn the parameters of the grafted block intertwined with those of the other teacher blocks. In the second step, the trained student blocks are progressively connected and then together grafted onto the teacher network, allowing the learned student blocks to adapt themselves to each other and eventually replace the teacher network. Experiments demonstrate that our approach, with only a few unlabeled samples, achieves gratifying results on CIFAR10, CIFAR100, and ILSVRC-2012. On CIFAR10 and CIFAR100, our performances are even on par with those of knowledge distillation schemes that utilize the full datasets. The source code is available at //github.com/zju-vipa/NetGraft.
Adder Neural Networks (ANNs) which only contain additions bring us a new way of developing deep neural networks with low energy consumption. Unfortunately, there is an accuracy drop when replacing all convolution filters by adder filters. The main reason here is the optimization difficulty of ANNs using $\ell_1$-norm, in which the estimation of gradient in back propagation is inaccurate. In this paper, we present a novel method for further improving the performance of ANNs without increasing the trainable parameters via a progressive kernel based knowledge distillation (PKKD) method. A convolutional neural network (CNN) with the same architecture is simultaneously initialized and trained as a teacher network, features and weights of ANN and CNN will be transformed to a new space to eliminate the accuracy drop. The similarity is conducted in a higher-dimensional space to disentangle the difference of their distributions using a kernel based method. Finally, the desired ANN is learned based on the information from both the ground-truth and teacher, progressively. The effectiveness of the proposed method for learning ANN with higher performance is then well-verified on several benchmarks. For instance, the ANN-50 trained using the proposed PKKD method obtains a 76.8\% top-1 accuracy on ImageNet dataset, which is 0.6\% higher than that of the ResNet-50.
Often we wish to transfer representational knowledge from one neural network to another. Examples include distilling a large network into a smaller one, transferring knowledge from one sensory modality to a second, or ensembling a collection of models into a single estimator. Knowledge distillation, the standard approach to these problems, minimizes the KL divergence between the probabilistic outputs of a teacher and student network. We demonstrate that this objective ignores important structural knowledge of the teacher network. This motivates an alternative objective by which we train a student to capture significantly more information in the teacher's representation of the data. We formulate this objective as contrastive learning. Experiments demonstrate that our resulting new objective outperforms knowledge distillation and other cutting-edge distillers on a variety of knowledge transfer tasks, including single model compression, ensemble distillation, and cross-modal transfer. Our method sets a new state-of-the-art in many transfer tasks, and sometimes even outperforms the teacher network when combined with knowledge distillation. Code: //github.com/HobbitLong/RepDistiller.
Language model pre-training, such as BERT, has significantly improved the performances of many natural language processing tasks. However, pre-trained language models are usually computationally expensive and memory intensive, so it is difficult to effectively execute them on some resource-restricted devices. To accelerate inference and reduce model size while maintaining accuracy, we firstly propose a novel transformer distillation method that is a specially designed knowledge distillation (KD) method for transformer-based models. By leveraging this new KD method, the plenty of knowledge encoded in a large teacher BERT can be well transferred to a small student TinyBERT. Moreover, we introduce a new two-stage learning framework for TinyBERT, which performs transformer distillation at both the pre-training and task-specific learning stages. This framework ensures that TinyBERT can capture both the general-domain and task-specific knowledge of the teacher BERT. TinyBERT is empirically effective and achieves comparable results with BERT in GLUE datasets, while being 7.5x smaller and 9.4x faster on inference. TinyBERT is also significantly better than state-of-the-art baselines, even with only about 28% parameters and 31% inference time of baselines.
This paper proposes a new generative adversarial network for pose transfer, i.e., transferring the pose of a given person to a target pose. The generator of the network comprises a sequence of Pose-Attentional Transfer Blocks that each transfers certain regions it attends to, generating the person image progressively. Compared with those in previous works, our generated person images possess better appearance consistency and shape consistency with the input images, thus significantly more realistic-looking. The efficacy and efficiency of the proposed network are validated both qualitatively and quantitatively on Market-1501 and DeepFashion. Furthermore, the proposed architecture can generate training images for person re-identification, alleviating data insufficiency. Codes and models are available at: //github.com/tengteng95/Pose-Transfer.git.
A zoo of deep nets is available these days for almost any given task, and it is increasingly unclear which net to start with when addressing a new task, or which net to use as an initialization for fine-tuning a new model. To address this issue, in this paper, we develop knowledge flow which moves 'knowledge' from multiple deep nets, referred to as teachers, to a new deep net model, called the student. The structure of the teachers and the student can differ arbitrarily and they can be trained on entirely different tasks with different output spaces too. Upon training with knowledge flow the student is independent of the teachers. We demonstrate our approach on a variety of supervised and reinforcement learning tasks, outperforming fine-tuning and other 'knowledge exchange' methods.
Topic models are among the most widely used methods in natural language processing, allowing researchers to estimate the underlying themes in a collection of documents. Most topic models use unsupervised methods and hence require the additional step of attaching meaningful labels to estimated topics. This process of manual labeling is not scalable and often problematic because it depends on the domain expertise of the researcher and may be affected by cardinality in human decision making. As a consequence, insights drawn from a topic model are difficult to replicate. We present a semi-automatic transfer topic labeling method that seeks to remedy some of these problems. We take advantage of the fact that domain-specific codebooks exist in many areas of research that can be exploited for automated topic labeling. We demonstrate our approach with a dynamic topic model analysis of the complete corpus of UK House of Commons speeches from 1935 to 2014, using the coding instructions of the Comparative Agendas Project to label topics. We show that our method works well for a majority of the topics we estimate, but we also find institution-specific topics, in particular on subnational governance, that require manual input. The method proposed in the paper can be easily extended to other areas with existing domain-specific knowledge bases, such as party manifestos, open-ended survey questions, social media data, and legal documents, in ways that can add knowledge to research programs.