亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Geographic Information Systems (GIS) and related technologies have generated substantial interest among statisticians with regard to scalable methodologies for analyzing large spatial datasets. A variety of scalable spatial process models have been proposed that can be easily embedded within a hierarchical modeling framework to carry out Bayesian inference. While the focus of statistical research has mostly been directed toward innovative and more complex model development, relatively limited attention has been accorded to approaches for easily implementable scalable hierarchical models for the practicing scientist or spatial analyst. This article discusses how point-referenced spatial process models can be cast as a conjugate Bayesian linear regression that can rapidly deliver inference on spatial processes. The approach allows exact sampling directly (avoids iterative algorithms such as Markov chain Monte Carlo) from the joint posterior distribution of regression parameters, the latent process and the predictive random variables, and can be easily implemented on statistical programming environments such as R.

相關內容

Discrete data are abundant and often arise as counts or rounded data. However, even for linear regression models, conjugate priors and closed-form posteriors are typically unavailable, thereby necessitating approximations or Markov chain Monte Carlo for posterior inference. For a broad class of count and rounded data regression models, we introduce conjugate priors that enable closed-form posterior inference. Key posterior and predictive functionals are computable analytically or via direct Monte Carlo simulation. Crucially, the predictive distributions are discrete to match the support of the data and can be evaluated or simulated jointly across multiple covariate values. These tools are broadly useful for linear regression, nonlinear models via basis expansions, and model and variable selection. Multiple simulation studies demonstrate significant advantages in computing, predictive modeling, and selection relative to existing alternatives.

In this paper, we establish minimax optimal rates of convergence for prediction in a semi-functional linear model that consists of a functional component and a less smooth nonparametric component. Our results reveal that the smoother functional component can be learned with the minimax rate as if the nonparametric component were known. More specifically, a double-penalized least squares method is adopted to estimate both the functional and nonparametric components within the framework of reproducing kernel Hilbert spaces. By virtue of the representer theorem, an efficient algorithm that requires no iterations is proposed to solve the corresponding optimization problem, where the regularization parameters are selected by the generalized cross validation criterion. Numerical studies are provided to demonstrate the effectiveness of the method and to verify the theoretical analysis.

Much of the micro data used for epidemiological studies contain sensitive measurements on real individuals. As a result, such micro data cannot be published out of privacy concerns, rendering any published statistical analyses on them nearly impossible to reproduce. To promote the dissemination of key datasets for analysis without jeopardizing the privacy of individuals, we introduce a cohesive Bayesian framework for the generation of fully synthetic, high dimensional micro datasets of mixed categorical, binary, count, and continuous variables. This process centers around a joint Bayesian model that is simultaneously compatible with all of these data types, enabling the creation of mixed synthetic datasets through posterior predictive sampling. Furthermore, a focal point of epidemiological data analysis is the study of conditional relationships between various exposures and key outcome variables through regression analysis. We design a modified data synthesis strategy to target and preserve these conditional relationships, including both nonlinearities and interactions. The proposed techniques are deployed to create a synthetic version of a confidential dataset containing dozens of health, cognitive, and social measurements on nearly 20,000 North Carolina children.

Two-player zero-sum games of infinite duration and their quantitative versions are used in verification to model the interaction between a controller (Eve) and its environment (Adam). The question usually addressed is that of the existence (and computability) of a strategy for Eve that can maximize her payoff against any strategy of Adam. In this work, we are interested in strategies of Eve that minimize her regret, i.e. strategies that minimize the difference between her actual payoff and the payoff she could have achieved if she had known the strategy of Adam in advance. We give algorithms to compute the strategies of Eve that ensure minimal regret against an adversary whose choice of strategy is (i) unrestricted, (ii) limited to positional strategies, or (iii) limited to word strategies. We also establish relations between the latter version and other problems studied in the literature.

Neural Networks play a growing role in many science disciplines, including physics. Variational Autoencoders (VAEs) are neural networks that are able to represent the essential information of a high dimensional data set in a low dimensional latent space, which have a probabilistic interpretation. In particular the so-called encoder network, the first part of the VAE, which maps its input onto a position in latent space, additionally provides uncertainty information in terms of a variance around this position. In this work, an extension to the Autoencoder architecture is introduced, the FisherNet. In this architecture, the latent space uncertainty is not generated using an additional information channel in the encoder, but derived from the decoder, by means of the Fisher information metric. This architecture has advantages from a theoretical point of view as it provides a direct uncertainty quantification derived from the model, and also accounts for uncertainty cross-correlations. We can show experimentally that the FisherNet produces more accurate data reconstructions than a comparable VAE and its learning performance also apparently scales better with the number of latent space dimensions.

Identifying the most deprived regions of any country or city is key if policy makers are to design successful interventions. However, locating areas with the greatest need is often surprisingly challenging in developing countries. Due to the logistical challenges of traditional household surveying, official statistics can be slow to be updated; estimates that exist can be coarse, a consequence of prohibitive costs and poor infrastructures; and mass urbanisation can render manually surveyed figures rapidly out-of-date. Comparative judgement models, such as the Bradley--Terry model, offer a promising solution. Leveraging local knowledge, elicited via comparisons of different areas' affluence, such models can both simplify logistics and circumvent biases inherent to house-hold surveys. Yet widespread adoption remains limited, due to the large amount of data existing approaches still require. We address this via development of a novel Bayesian Spatial Bradley--Terry model, which substantially decreases the amount of data comparisons required for effective inference. This model integrates a network representation of the city or country, along with assumptions of spatial smoothness that allow deprivation in one area to be informed by neighbouring areas. We demonstrate the practical effectiveness of this method, through a novel comparative judgement data set collected in Dar es Salaam, Tanzania.

Dynamic Linear Models (DLMs) are commonly employed for time series analysis due to their versatile structure, simple recursive updating, and probabilistic forecasting. However, the options for count time series are limited: Gaussian DLMs require continuous data, while Poisson-based alternatives often lack sufficient modeling flexibility. We introduce a novel methodology for count time series by warping a Gaussian DLM. The warping function has two components: a transformation operator that provides distributional flexibility and a rounding operator that ensures the correct support for the discrete data-generating process. Importantly, we develop conjugate inference for the warped DLM, which enables analytic and recursive updates for the state space filtering and smoothing distributions. We leverage these results to produce customized and efficient computing strategies for inference and forecasting, including Monte Carlo simulation for offline analysis and an optimal particle filter for online inference. This framework unifies and extends a variety of discrete time series models and is valid for natural counts, rounded values, and multivariate observations. Simulation studies illustrate the excellent forecasting capabilities of the warped DLM. The proposed approach is applied to a multivariate time series of daily overdose counts and demonstrates both modeling and computational successes.

Much stringent reliability and processing latency requirements in ultra-reliable-low-latency-communication (URLLC) traffic make the design of linear massive multiple-input-multiple-output (M-MIMO) receivers becomes very challenging. Recently, Bayesian concept has been used to increase the detection reliability in minimum-mean-square-error (MMSE) linear receivers. However, the latency processing time is a major concern due to the exponential complexity of matrix inversion operations in MMSE schemes. This paper proposes an iterative M-MIMO receiver that is developed by using a Bayesian concept and a parallel interference cancellation (PIC) scheme, referred to as a linear Bayesian learning (LBL) receiver. PIC has a linear complexity as it uses a combination of maximum ratio combining (MRC) and decision statistic combining (DSC) schemes to avoid matrix inversion operations. Simulation results show that the bit-error-rate (BER) and latency processing performances of the proposed receiver outperform the ones of MMSE and best Bayesian-based receivers by minimum $2$ dB and $19$ times for various M-MIMO system configurations.

Though data augmentation has rapidly emerged as a key tool for optimization in modern machine learning, a clear picture of how augmentation schedules affect optimization and interact with optimization hyperparameters such as learning rate is nascent. In the spirit of classical convex optimization and recent work on implicit bias, the present work analyzes the effect of augmentation on optimization in the simple convex setting of linear regression with MSE loss. We find joint schedules for learning rate and data augmentation scheme under which augmented gradient descent provably converges and characterize the resulting minimum. Our results apply to arbitrary augmentation schemes, revealing complex interactions between learning rates and augmentations even in the convex setting. Our approach interprets augmented (S)GD as a stochastic optimization method for a time-varying sequence of proxy losses. This gives a unified way to analyze learning rate, batch size, and augmentations ranging from additive noise to random projections. From this perspective, our results, which also give rates of convergence, can be viewed as Monro-Robbins type conditions for augmented (S)GD.

Models of stochastic processes are widely used in almost all fields of science. Theory validation, parameter estimation, and prediction all require model calibration and statistical inference using data. However, data are almost always incomplete observations of reality. This leads to a great challenge for statistical inference because the likelihood function will be intractable for almost all partially observed stochastic processes. This renders many statistical methods, especially within a Bayesian framework, impossible to implement. Therefore, computationally expensive likelihood-free approaches are applied that replace likelihood evaluations with realisations of the model and observation process. For accurate inference, however, likelihood-free techniques may require millions of expensive stochastic simulations. To address this challenge, we develop a new method based on recent advances in multilevel and multifidelity. Our approach combines the multilevel Monte Carlo telescoping summation, applied to a sequence of approximate Bayesian posterior targets, with a multifidelity rejection sampler to minimise the number of computationally expensive exact simulations required for accurate inference. We present the derivation of our new algorithm for likelihood-free Bayesian inference, discuss practical implementation details, and demonstrate substantial performance improvements. Using examples from systems biology, we demonstrate improvements of more than two orders of magnitude over standard rejection sampling techniques. Our approach is generally applicable to accelerate other sampling schemes, such as sequential Monte Carlo, to enable feasible Bayesian analysis for realistic practical applications in physics, chemistry, biology, epidemiology, ecology and economics.

北京阿比特科技有限公司