This paper presents new \emph{variance-aware} confidence sets for linear bandits and linear mixture Markov Decision Processes (MDPs). With the new confidence sets, we obtain the follow regret bounds: For linear bandits, we obtain an $\tilde{O}(poly(d)\sqrt{1 + \sum_{k=1}^{K}\sigma_k^2})$ data-dependent regret bound, where $d$ is the feature dimension, $K$ is the number of rounds, and $\sigma_k^2$ is the \emph{unknown} variance of the reward at the $k$-th round. This is the first regret bound that only scales with the variance and the dimension but \emph{no explicit polynomial dependency on $K$}. When variances are small, this bound can be significantly smaller than the $\tilde{\Theta}\left(d\sqrt{K}\right)$ worst-case regret bound. For linear mixture MDPs, we obtain an $\tilde{O}(poly(d, \log H)\sqrt{K})$ regret bound, where $d$ is the number of base models, $K$ is the number of episodes, and $H$ is the planning horizon. This is the first regret bound that only scales \emph{logarithmically} with $H$ in the reinforcement learning with linear function approximation setting, thus \emph{exponentially improving} existing results, and resolving an open problem in \citep{zhou2020nearly}. We develop three technical ideas that may be of independent interest: 1) applications of the peeling technique to both the input norm and the variance magnitude, 2) a recursion-based estimator for the variance, and 3) a new convex potential lemma that generalizes the seminal elliptical potential lemma.
We study reinforcement learning (RL) with linear function approximation. Existing algorithms for this problem only have high-probability regret and/or Probably Approximately Correct (PAC) sample complexity guarantees, which cannot guarantee the convergence to the optimal policy. In this paper, in order to overcome the limitation of existing algorithms, we propose a new algorithm called FLUTE, which enjoys uniform-PAC convergence to the optimal policy with high probability. The uniform-PAC guarantee is the strongest possible guarantee for reinforcement learning in the literature, which can directly imply both PAC and high probability regret bounds, making our algorithm superior to all existing algorithms with linear function approximation. At the core of our algorithm is a novel minimax value function estimator and a multi-level partition scheme to select the training samples from historical observations. Both of these techniques are new and of independent interest.
We study the model-based reward-free reinforcement learning with linear function approximation for episodic Markov decision processes (MDPs). In this setting, the agent works in two phases. In the exploration phase, the agent interacts with the environment and collects samples without the reward. In the planning phase, the agent is given a specific reward function and uses samples collected from the exploration phase to learn a good policy. We propose a new provably efficient algorithm, called UCRL-RFE under the Linear Mixture MDP assumption, where the transition probability kernel of the MDP can be parameterized by a linear function over certain feature mappings defined on the triplet of state, action, and next state. We show that to obtain an $\epsilon$-optimal policy for arbitrary reward function, UCRL-RFE needs to sample at most $\tilde{\mathcal{O}}(H^5d^2\epsilon^{-2})$ episodes during the exploration phase. Here, $H$ is the length of the episode, $d$ is the dimension of the feature mapping. We also propose a variant of UCRL-RFE using Bernstein-type bonus and show that it needs to sample at most $\tilde{\mathcal{O}}(H^4d(H + d)\epsilon^{-2})$ to achieve an $\epsilon$-optimal policy. By constructing a special class of linear Mixture MDPs, we also prove that for any reward-free algorithm, it needs to sample at least $\tilde \Omega(H^2d\epsilon^{-2})$ episodes to obtain an $\epsilon$-optimal policy. Our upper bound matches the lower bound in terms of the dependence on $\epsilon$ and the dependence on $d$ if $H \ge d$.
We introduce LAM, a subsystem of IMALL2 with restricted additive rules able to manage duplication linearly, called linear additive rules. LAM is presented as the type assignment system for a calculus endowed with copy constructors, which deal with substitution in a linear fashion. As opposed to the standard additive rules, the linear additive rules do not affect the complexity of term reduction: typable terms of LAM enjoy linear strong normalization. Moreover, a mildly weakened version of cut-elimination for this system is proven which takes a cubic number of steps. Finally, we define a sound translation from proofs of LAM into linear lambda terms of IMLL2, and we study its complexity.
Low-rank approximation using time-dependent bases (TDBs) has proven effective for reduced-order modeling of stochastic partial differential equations (SPDEs). In these techniques, the random field is decomposed to a set of deterministic TDBs and time-dependent stochastic coefficients. When applied to SPDEs with non-homogeneous stochastic boundary conditions (BCs), appropriate BC must be specified for each of the TDBs. However, determining BCs for TDB is not trivial because: (i) the dimension of the random BCs is different than the rank of the TDB subspace; (ii) TDB in most formulations must preserve orthonormality or orthogonality constraints and specifying BCs for TDB should not violate these constraints in the space-discretized form. In this work, we present a methodology for determining the boundary conditions for TDBs at no additional computational cost beyond that of solving the same SPDE with homogeneous BCs. Our methodology is informed by the fact the TDB evolution equations are the optimality conditions of a variational principle. We leverage the same variational principle to derive an evolution equation for the value of TDB at the boundaries. The presented methodology preserves the orthonormality or orthogonality constraints of TDBs. We present the formulation for both the dynamically bi-orthonormal (DBO) decomposition as well as the dynamically orthogonal (DO) decomposition. We show that the presented methodology can be applied to stochastic Dirichlet, Neumann, and Robin boundary conditions. We assess the performance of the presented method for linear advection-diffusion equation, Burgers' equation, and two-dimensional advection-diffusion equation with constant and temperature-dependent conduction coefficient.
Decision-makers often face the "many bandits" problem, where one must simultaneously learn across related but heterogeneous contextual bandit instances. For instance, a large retailer may wish to dynamically learn product demand across many stores to solve pricing or inventory problems, making it desirable to learn jointly for stores serving similar customers; alternatively, a hospital network may wish to dynamically learn patient risk across many providers to allocate personalized interventions, making it desirable to learn jointly for hospitals serving similar patient populations. We study the setting where the unknown parameter in each bandit instance can be decomposed into a global parameter plus a sparse instance-specific term. Then, we propose a novel two-stage estimator that exploits this structure in a sample-efficient way by using a combination of robust statistics (to learn across similar instances) and LASSO regression (to debias the results). We embed this estimator within a bandit algorithm, and prove that it improves asymptotic regret bounds in the context dimension $d$; this improvement is exponential for data-poor instances. We further demonstrate how our results depend on the underlying network structure of bandit instances.
The paper concerns convergence and asymptotic statistics for stochastic approximation driven by Markovian noise: $$ \theta_{n+1}= \theta_n + \alpha_{n + 1} f(\theta_n, \Phi_{n+1}) \,,\quad n\ge 0, $$ in which each $\theta_n\in\Re^d$, $ \{ \Phi_n \}$ is a Markov chain on a general state space X with stationary distribution $\pi$, and $f:\Re^d\times \text{X} \to\Re^d$. In addition to standard Lipschitz bounds on $f$, and conditions on the vanishing step-size sequence $\{\alpha_n\}$, it is assumed that the associated ODE is globally asymptotically stable with stationary point denoted $\theta^*$, where $\bar f(\theta)=E[f(\theta,\Phi)]$ with $\Phi\sim\pi$. Moreover, the ODE@$\infty$ defined with respect to the vector field, $$ \bar f_\infty(\theta):= \lim_{r\to\infty} r^{-1} \bar f(r\theta) \,,\qquad \theta\in\Re^d, $$ is asymptotically stable. The main contributions are summarized as follows: (i) The sequence $\theta$ is convergent if $\Phi$ is geometrically ergodic, and subject to compatible bounds on $f$. The remaining results are established under a stronger assumption on the Markov chain: A slightly weaker version of the Donsker-Varadhan Lyapunov drift condition known as (DV3). (ii) A Lyapunov function is constructed for the joint process $\{\theta_n,\Phi_n\}$ that implies convergence of $\{ \theta_n\}$ in $L_4$. (iii) A functional CLT is established, as well as the usual one-dimensional CLT for the normalized error $z_n:= (\theta_n-\theta^*)/\sqrt{\alpha_n}$. Moment bounds combined with the CLT imply convergence of the normalized covariance, $$ \lim_{n \to \infty} E [ z_n z_n^T ] = \Sigma_\theta, $$ where $\Sigma_\theta$ is the asymptotic covariance appearing in the CLT. (iv) An example is provided where the Markov chain $\Phi$ is geometrically ergodic but it does not satisfy (DV3). While the algorithm is convergent, the second moment is unbounded.
The Q-learning algorithm is known to be affected by the maximization bias, i.e. the systematic overestimation of action values, an important issue that has recently received renewed attention. Double Q-learning has been proposed as an efficient algorithm to mitigate this bias. However, this comes at the price of an underestimation of action values, in addition to increased memory requirements and a slower convergence. In this paper, we introduce a new way to address the maximization bias in the form of a "self-correcting algorithm" for approximating the maximum of an expected value. Our method balances the overestimation of the single estimator used in conventional Q-learning and the underestimation of the double estimator used in Double Q-learning. Applying this strategy to Q-learning results in Self-correcting Q-learning. We show theoretically that this new algorithm enjoys the same convergence guarantees as Q-learning while being more accurate. Empirically, it performs better than Double Q-learning in domains with rewards of high variance, and it even attains faster convergence than Q-learning in domains with rewards of zero or low variance. These advantages transfer to a Deep Q Network implementation that we call Self-correcting DQN and which outperforms regular DQN and Double DQN on several tasks in the Atari 2600 domain.
We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.
This work considers the problem of provably optimal reinforcement learning for episodic finite horizon MDPs, i.e. how an agent learns to maximize his/her long term reward in an uncertain environment. The main contribution is in providing a novel algorithm --- Variance-reduced Upper Confidence Q-learning (vUCQ) --- which enjoys a regret bound of $\widetilde{O}(\sqrt{HSAT} + H^5SA)$, where the $T$ is the number of time steps the agent acts in the MDP, $S$ is the number of states, $A$ is the number of actions, and $H$ is the (episodic) horizon time. This is the first regret bound that is both sub-linear in the model size and asymptotically optimal. The algorithm is sub-linear in that the time to achieve $\epsilon$-average regret for any constant $\epsilon$ is $O(SA)$, which is a number of samples that is far less than that required to learn any non-trivial estimate of the transition model (the transition model is specified by $O(S^2A)$ parameters). The importance of sub-linear algorithms is largely the motivation for algorithms such as $Q$-learning and other "model free" approaches. vUCQ algorithm also enjoys minimax optimal regret in the long run, matching the $\Omega(\sqrt{HSAT})$ lower bound. Variance-reduced Upper Confidence Q-learning (vUCQ) is a successive refinement method in which the algorithm reduces the variance in $Q$-value estimates and couples this estimation scheme with an upper confidence based algorithm. Technically, the coupling of both of these techniques is what leads to the algorithm enjoying both the sub-linear regret property and the asymptotically optimal regret.
We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.