Heterogeneity has been a hot topic in recent educational literature. Several calls have been voiced to adopt methods that capture different patterns or subgroups within students behavior or functioning. Assuming that there is an average pattern that represents the entirety of student populations requires the measured construct to have the same causal mechanism, same development pattern, and affect students in exactly the same way. Using a person-centered method (Finite Gaussian mixture model or latent profile analysis), the present tutorial shows how to uncover the heterogeneity within engagement data by identifying three latent or unobserved clusters. This chapter offers an introduction to the model-based clustering that includes the principles of the methods, a guide to choice of number of clusters, evaluation of clustering results and a detailed guide with code and a real-life dataset. The discussion elaborates on the interpretation of the results, the advantages of model-based clustering as well as how it compares with other methods.
Preprints play an increasingly critical role in academic communities. There are many reasons driving researchers to post their manuscripts to preprint servers before formal submission to journals or conferences, but the use of preprints has also sparked considerable controversy, especially surrounding the claim of priority. In this paper, a case study of computer science preprints submitted to arXiv from 2008 to 2017 is conducted to quantify how many preprints have eventually been printed in peer-reviewed venues. Among those published manuscripts, some are published under different titles and without an update to their preprints on arXiv. In the case of these manuscripts, the traditional fuzzy matching method is incapable of mapping the preprint to the final published version. In view of this issue, we introduce a semantics-based mapping method with the employment of Bidirectional Encoder Representations from Transformers (BERT). With this new mapping method and a plurality of data sources, we find that 66% of all sampled preprints are published under unchanged titles and 11% are published under different titles and with other modifications. A further analysis was then performed to investigate why these preprints but not others were accepted for publication. Our comparison reveals that in the field of computer science, published preprints feature adequate revisions, multiple authorship, detailed abstract and introduction, extensive and authoritative references and available source code.
Sequential algorithms such as sequential importance sampling (SIS) and sequential Monte Carlo (SMC) have proven fundamental in Bayesian inference for models not admitting a readily available likelihood function. For approximate Bayesian computation (ABC), SMC-ABC is the state-of-art sampler. However, since the ABC paradigm is intrinsically wasteful, sequential ABC schemes can benefit from well-targeted proposal samplers that efficiently avoid improbable parameter regions. We contribute to the ABC modeller's toolbox with novel proposal samplers that are conditional to summary statistics of the data. In a sense, the proposed parameters are "guided" to rapidly reach regions of the posterior surface that are compatible with the observed data. This speeds up the convergence of these sequential samplers, thus reducing the computational effort, while preserving the accuracy in the inference. We provide a variety of guided Gaussian and copula-based samplers for both SIS-ABC and SMC-ABC easing inference for challenging case-studies, including multimodal posteriors, highly correlated posteriors, hierarchical models with high-dimensional summary statistics (180 summaries used to infer 21 parameters) and a simulation study of cell movements (using more than 400 summaries).
In this paper we revisit the efficacy of knowledge distillation as a function matching and metric learning problem. In doing so we verify three important design decisions, namely the normalisation, soft maximum function, and projection layers as key ingredients. We theoretically show that the projector implicitly encodes information on past examples, enabling relational gradients for the student. We then show that the normalisation of representations is tightly coupled with the training dynamics of this projector, which can have a large impact on the students performance. Finally, we show that a simple soft maximum function can be used to address any significant capacity gap problems. Experimental results on various benchmark datasets demonstrate that using these insights can lead to superior or comparable performance to state-of-the-art knowledge distillation techniques, despite being much more computationally efficient. In particular, we obtain these results across image classification (CIFAR100 and ImageNet), object detection (COCO2017), and on more difficult distillation objectives, such as training data efficient transformers, whereby we attain a 77.2% top-1 accuracy with DeiT-Ti on ImageNet.
Navigating automated driving systems (ADSs) through complex driving environments is difficult. Predicting the driving behavior of surrounding human-driven vehicles (HDVs) is a critical component of an ADS. This paper proposes an enhanced motion-planning approach for an ADS in a highway-merging scenario. The proposed enhanced approach utilizes the results of two aspects: the driving behavior and long-term trajectory of surrounding HDVs, which are coupled using a hierarchical model that is used for the motion planning of an ADS to improve driving safety.
We consider the problem of computing a sparse binary representation of an image. To be precise, given an image and an overcomplete, non-orthonormal basis, we aim to find a sparse binary vector indicating the minimal set of basis vectors that when added together best reconstruct the given input. We formulate this problem with an $L_2$ loss on the reconstruction error, and an $L_0$ (or, equivalently, an $L_1$) loss on the binary vector enforcing sparsity. This yields a so-called Quadratic Unconstrained Binary Optimization (QUBO) problem, whose solution is generally NP-hard to find. The contribution of this work is twofold. First, the method of unsupervised and unnormalized dictionary feature learning for a desired sparsity level to best match the data is presented. Second, the binary sparse coding problem is then solved on the Loihi 1 neuromorphic chip by the use of stochastic networks of neurons to traverse the non-convex energy landscape. The solutions are benchmarked against the classical heuristic simulated annealing. We demonstrate neuromorphic computing is suitable for sampling low energy solutions of binary sparse coding QUBO models, and although Loihi 1 is capable of sampling very sparse solutions of the QUBO models, there needs to be improvement in the implementation in order to be competitive with simulated annealing.
Graph Neural Networks (GNNs) are becoming increasingly popular due to their superior performance in critical graph-related tasks. While quantization is widely used to accelerate GNN computation, quantized training faces unprecedented challenges. Current quantized GNN training systems often have longer training times than their full-precision counterparts for two reasons: (i) addressing the accuracy challenge leads to excessive overhead, and (ii) the optimization potential exposed by quantization is not adequately leveraged. This paper introduces Tango which re-thinks quantization challenges and opportunities for graph neural network training on GPUs with three contributions: Firstly, we introduce efficient rules to maintain accuracy during quantized GNN training. Secondly, we design and implement quantization-aware primitives and inter-primitive optimizations that can speed up GNN training. Finally, we integrate Tango with the popular Deep Graph Library (DGL) system and demonstrate its superior performance over state-of-the-art approaches on various GNN models and datasets.
Incorporating prior knowledge into pre-trained language models has proven to be effective for knowledge-driven NLP tasks, such as entity typing and relation extraction. Current pre-training procedures usually inject external knowledge into models by using knowledge masking, knowledge fusion and knowledge replacement. However, factual information contained in the input sentences have not been fully mined, and the external knowledge for injecting have not been strictly checked. As a result, the context information cannot be fully exploited and extra noise will be introduced or the amount of knowledge injected is limited. To address these issues, we propose MLRIP, which modifies the knowledge masking strategies proposed by ERNIE-Baidu, and introduce a two-stage entity replacement strategy. Extensive experiments with comprehensive analyses illustrate the superiority of MLRIP over BERT-based models in military knowledge-driven NLP tasks.
The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.
Meta-learning, or learning to learn, has gained renewed interest in recent years within the artificial intelligence community. However, meta-learning is incredibly prevalent within nature, has deep roots in cognitive science and psychology, and is currently studied in various forms within neuroscience. The aim of this review is to recast previous lines of research in the study of biological intelligence within the lens of meta-learning, placing these works into a common framework. More recent points of interaction between AI and neuroscience will be discussed, as well as interesting new directions that arise under this perspective.
In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7\% relative improvement on the instance segmentation and 7.1\% on the object detection of small objects, compared to the current state of the art method on MS COCO.