亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Existing work on jailbreak Multimodal Large Language Models (MLLMs) has focused primarily on adversarial examples in model inputs, with less attention to vulnerabilities, especially in model API. To fill the research gap, we carry out the following work: 1) We discover a system prompt leakage vulnerability in GPT-4V. Through carefully designed dialogue, we successfully extract the internal system prompts of GPT-4V. This finding indicates potential exploitable security risks in MLLMs; 2) Based on the acquired system prompts, we propose a novel MLLM jailbreaking attack method termed SASP (Self-Adversarial Attack via System Prompt). By employing GPT-4 as a red teaming tool against itself, we aim to search for potential jailbreak prompts leveraging stolen system prompts. Furthermore, in pursuit of better performance, we also add human modification based on GPT-4's analysis, which further improves the attack success rate to 98.7\%; 3) We evaluated the effect of modifying system prompts to defend against jailbreaking attacks. Results show that appropriately designed system prompts can significantly reduce jailbreak success rates. Overall, our work provides new insights into enhancing MLLM security, demonstrating the important role of system prompts in jailbreaking. This finding could be leveraged to greatly facilitate jailbreak success rates while also holding the potential for defending against jailbreaks.

相關內容

The growing interest in Large Language Models (LLMs) for specialized applications has revealed a significant challenge: when tailored to specific domains, LLMs tend to experience catastrophic forgetting, compromising their general capabilities and leading to a suboptimal user experience. Additionally, crafting a versatile model for multiple domains simultaneously often results in a decline in overall performance due to confusion between domains. In response to these issues, we present the RolE Prompting Guided Multi-Domain Adaptation (REGA) strategy. This novel approach effectively manages multi-domain LLM adaptation through three key components: 1) Self-Distillation constructs and replays general-domain exemplars to alleviate catastrophic forgetting. 2) Role Prompting assigns a central prompt to the general domain and a unique role prompt to each specific domain to minimize inter-domain confusion during training. 3) Role Integration reuses and integrates a small portion of domain-specific data to the general-domain data, which are trained under the guidance of the central prompt. The central prompt is used for a streamlined inference process, removing the necessity to switch prompts for different domains. Empirical results demonstrate that REGA effectively alleviates catastrophic forgetting and inter-domain confusion. This leads to improved domain-specific performance compared to standard fine-tuned models, while still preserving robust general capabilities.

This paper presents a Geometric-Photometric Joint Alignment(GPJA) method, for accurately aligning human expressions by combining geometry and photometric information. Common practices for registering human heads typically involve aligning landmarks with facial template meshes using geometry processing approaches, but often overlook photometric consistency. GPJA overcomes this limitation by leveraging differentiable rendering to align vertices with target expressions, achieving joint alignment in geometry and photometric appearances automatically, without the need for semantic annotation or aligned meshes for training. It features a holistic rendering alignment strategy and a multiscale regularized optimization for robust and fast convergence. The method utilizes derivatives at vertex positions for supervision and employs a gradient-based algorithm which guarantees smoothness and avoids topological defects during the geometry evolution. Experimental results demonstrate faithful alignment under various expressions, surpassing the conventional ICP-based methods and the state-of-the-art deep learning based method. In practical, our method enhances the efficiency of obtaining topology-consistent face models from multi-view stereo facial scanning.

Aiming at promoting the safe real-world deployment of Reinforcement Learning (RL), research on safe RL has made significant progress in recent years. However, most existing works in the literature still focus on the online setting where risky violations of the safety budget are likely to be incurred during training. Besides, in many real-world applications, the learned policy is required to respond to dynamically determined safety budgets (i.e., constraint threshold) in real time. In this paper, we target at the above real-time budget constraint problem under the offline setting, and propose Trajectory-based REal-time Budget Inference (TREBI) as a novel solution that models this problem from the perspective of trajectory distribution and solves it through diffusion model planning. Theoretically, we prove an error bound of the estimation on the episodic reward and cost under the offline setting and thus provide a performance guarantee for TREBI. Empirical results on a wide range of simulation tasks and a real-world large-scale advertising application demonstrate the capability of TREBI in solving real-time budget constraint problems under offline settings.

In search of a simple baseline for Deep Reinforcement Learning in locomotion tasks, we propose a model-free open-loop strategy. By leveraging prior knowledge and the elegance of simple oscillators to generate periodic joint motions, it achieves respectable performance in five different locomotion environments, with a number of tunable parameters that is a tiny fraction of the thousands typically required by DRL algorithms. We conduct two additional experiments using open-loop oscillators to identify current shortcomings of these algorithms. Our results show that, compared to the baseline, DRL is more prone to performance degradation when exposed to sensor noise or failure. Furthermore, we demonstrate a successful transfer from simulation to reality using an elastic quadruped, where RL fails without randomization or reward engineering. Overall, the proposed baseline and associated experiments highlight the existing limitations of DRL for robotic applications, provide insights on how to address them, and encourage reflection on the costs of complexity and generality.

Large Language models (LLMs) are achieving state-of-the-art performance in many different downstream tasks. However, the increasing urgency of data privacy requires LLMs to train with Differential Privacy (DP) on private data. Concurrently it is also necessary to compress LLMs for real-life deployments on resource-constrained devices or latency-sensitive applications. Differential privacy and model compression generally must trade off utility loss to achieve their objectives. Moreover, concurrently achieving both can result in even more utility loss. To this end, we propose a novel differentially private knowledge distillation algorithm that exploits synthetic data generated by a differentially private LLM. The knowledge of a teacher model is transferred onto the student in two ways: one way from the synthetic data itself, the hard labels, and the other way by the output distribution of the teacher model evaluated on the synthetic data, the soft labels. Furthermore, if the teacher and student share a similar architectural structure, we can further distill knowledge by exploiting hidden representations. Our results show that our framework substantially improves the utility over existing baselines with strong privacy parameters, {\epsilon} = 2, validating that we can successfully compress autoregressive LLMs while preserving the privacy of training data.

As Multi-Robot Systems (MRS) become more affordable and computing capabilities grow, they provide significant advantages for complex applications such as environmental monitoring, underwater inspections, or space exploration. However, accounting for potential communication loss or the unavailability of communication infrastructures in these application domains remains an open problem. Much of the applicable MRS research assumes that the system can sustain communication through proximity regulations and formation control or by devising a framework for separating and adhering to a predetermined plan for extended periods of disconnection. The latter technique enables an MRS to be more efficient, but breakdowns and environmental uncertainties can have a domino effect throughout the system, particularly when the mission goal is intricate or time-sensitive. To deal with this problem, our proposed framework has two main phases: i) a centralized planner to allocate mission tasks by rewarding intermittent rendezvous between robots to mitigate the effects of the unforeseen events during mission execution, and ii) a decentralized replanning scheme leveraging epistemic planning to formalize belief propagation and a Monte Carlo tree search for policy optimization given distributed rational belief updates. The proposed framework outperforms a baseline heuristic and is validated using simulations and experiments with aerial vehicles.

Large Language Models (LLMs) are a class of generative AI models built using the Transformer network, capable of leveraging vast datasets to identify, summarize, translate, predict, and generate language. LLMs promise to revolutionize society, yet training these foundational models poses immense challenges. Semantic vector search within large language models is a potent technique that can significantly enhance search result accuracy and relevance. Unlike traditional keyword-based search methods, semantic search utilizes the meaning and context of words to grasp the intent behind queries and deliver more precise outcomes. Elasticsearch emerges as one of the most popular tools for implementing semantic search an exceptionally scalable and robust search engine designed for indexing and searching extensive datasets. In this article, we delve into the fundamentals of semantic search and explore how to harness Elasticsearch and Transformer models to bolster large language model processing paradigms. We gain a comprehensive understanding of semantic search principles and acquire practical skills for implementing semantic search in real-world model application scenarios.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

Graph Neural Networks (GNNs) have recently been used for node and graph classification tasks with great success, but GNNs model dependencies among the attributes of nearby neighboring nodes rather than dependencies among observed node labels. In this work, we consider the task of inductive node classification using GNNs in supervised and semi-supervised settings, with the goal of incorporating label dependencies. Because current GNNs are not universal (i.e., most-expressive) graph representations, we propose a general collective learning approach to increase the representation power of any existing GNN. Our framework combines ideas from collective classification with self-supervised learning, and uses a Monte Carlo approach to sampling embeddings for inductive learning across graphs. We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy, for a variety of state-of-the-art GNNs.

Event detection (ED), a sub-task of event extraction, involves identifying triggers and categorizing event mentions. Existing methods primarily rely upon supervised learning and require large-scale labeled event datasets which are unfortunately not readily available in many real-life applications. In this paper, we consider and reformulate the ED task with limited labeled data as a Few-Shot Learning problem. We propose a Dynamic-Memory-Based Prototypical Network (DMB-PN), which exploits Dynamic Memory Network (DMN) to not only learn better prototypes for event types, but also produce more robust sentence encodings for event mentions. Differing from vanilla prototypical networks simply computing event prototypes by averaging, which only consume event mentions once, our model is more robust and is capable of distilling contextual information from event mentions for multiple times due to the multi-hop mechanism of DMNs. The experiments show that DMB-PN not only deals with sample scarcity better than a series of baseline models but also performs more robustly when the variety of event types is relatively large and the instance quantity is extremely small.

北京阿比特科技有限公司