Sequential testing, always-valid $p$-values, and confidence sequences promise flexible statistical inference and on-the-fly decision making. However, unlike fixed-$n$ inference based on asymptotic normality, existing sequential tests either make parametric assumptions and end up under-covering/over-rejecting when these fail or use non-parametric but conservative concentration inequalities and end up over-covering/under-rejecting. To circumvent these issues, we sidestep exact at-least-$\alpha$ coverage and focus on asymptotically exact coverage and asymptotic optimality. That is, we seek sequential tests whose probability of ever rejecting a true hypothesis asymptotically approaches $\alpha$ and whose expected time to reject a false hypothesis approaches a lower bound on all tests with asymptotic coverage at least $\alpha$, both under an appropriate asymptotic regime. We permit observations to be both non-parametric and dependent and focus on testing whether the observations form a martingale difference sequence. We propose the universal sequential probability ratio test (uSPRT), a slight modification to the normal-mixture sequential probability ratio test, where we add a burn-in period and adjust thresholds accordingly. We show that even in this very general setting, the uSPRT is asymptotically optimal under mild generic conditions. We apply the results to stabilized estimating equations to test means, treatment effects, etc. Our results also provide corresponding guarantees for the implied confidence sequences. Numerical simulations verify our guarantees and the benefits of the uSPRT over alternatives.
In this article, we construct semiparametrically efficient estimators of linear functionals of a probability measure in the presence of side information using an easy empirical likelihood approach. We use estimated constraint functions and allow the number of constraints to grow with the sample size. Considered are three cases of information which can be characterized by infinitely many constraints: (1) the marginal distributions are known, (2) the marginals are unknown but identical, and (3) distributional symmetry. An improved spatial depth function is defined and its asymptotic properties are studied. Simulation results on efficiency gain are reported.
We consider the problem of tracking an unknown time varying parameter that characterizes the probabilistic evolution of a sequence of independent observations. To this aim, we propose a stochastic gradient descent-based recursive scheme in which the log-likelihood of the observations acts as time varying gain function. We prove convergence in mean-square error in a suitable neighbourhood of the unknown time varying parameter and illustrate the details of our findings in the case where data are generated from distributions belonging to the exponential family.
Autonomous driving (AD) and advanced driver assistance systems (ADAS) increasingly utilize deep neural networks (DNNs) for improved perception or planning. Nevertheless, DNNs are quite brittle when the data distribution during inference deviates from the data distribution during training. This represents a challenge when deploying in partly unknown environments like in the case of ADAS. At the same time, the standard confidence of DNNs remains high even if the classification reliability decreases. This is problematic since following motion control algorithms consider the apparently confident prediction as reliable even though it might be considerably wrong. To reduce this problem real-time capable confidence estimation is required that better aligns with the actual reliability of the DNN classification. Additionally, the need exists for black-box confidence estimation to enable the homogeneous inclusion of externally developed components to an entire system. In this work we explore this use case and introduce the neighborhood confidence (NHC) which estimates the confidence of an arbitrary DNN for classification. The metric can be used for black-box systems since only the top-1 class output is required and does not need access to the gradients, the training dataset or a hold-out validation dataset. Evaluation on different data distributions, including small in-domain distribution shifts, out-of-domain data or adversarial attacks, shows that the NHC performs better or on par with a comparable method for online white-box confidence estimation in low data regimes which is required for real-time capable AD/ADAS.
Two recent lower bounds on the compressibility of repetitive sequences, $\delta \le \gamma$, have received much attention. It has been shown that a length-$n$ string $S$ over an alphabet of size $\sigma$ can be represented within the optimal $O(\delta\log\tfrac{n\log \sigma}{\delta \log n})$ space, and further, that within that space one can find all the $occ$ occurrences in $S$ of any length-$m$ pattern in time $O(m\log n + occ \log^\epsilon n)$ for any constant $\epsilon>0$. Instead, the near-optimal search time $O(m+({occ+1})\log^\epsilon n)$ has been achieved only within $O(\gamma\log\frac{n}{\gamma})$ space. Both results are based on considerably different locally consistent parsing techniques. The question of whether the better search time could be supported within the $\delta$-optimal space remained open. In this paper, we prove that both techniques can indeed be combined to obtain the best of both worlds: $O(m+({occ+1})\log^\epsilon n)$ search time within $O(\delta\log\tfrac{n\log \sigma}{\delta \log n})$ space. Moreover, the number of occurrences can be computed in $O(m+\log^{2+\epsilon}n)$ time within $O(\delta\log\tfrac{n\log \sigma}{\delta \log n})$ space. We also show that an extra sublogarithmic factor on top of this space enables optimal $O(m+occ)$ search time, whereas an extra logarithmic factor enables optimal $O(m)$ counting time.
We consider the problem of detecting (testing) Gaussian stochastic sequences (signals) with imprecisely known means and covariance matrices. The alternative is independent identically distributed zero-mean Gaussian random variables with unit variances. For a given false alarm (1st-kind error) probability, the quality of minimax detection is given by the best miss probability (2nd-kind error probability) exponent over a growing observation horizon. We explore the maximal set of means and covariance matrices (composite hypothesis) such that its minimax testing can be replaced with testing a single particular pair consisting of a mean and a covariance matrix (simple hypothesis) without degrading the detection exponent. We completely describe this maximal set.
This work considers the low-rank approximation of a matrix $A(t)$ depending on a parameter $t$ in a compact set $D \subset \mathbb{R}^d$. Application areas that give rise to such problems include computational statistics and dynamical systems. Randomized algorithms are an increasingly popular approach for performing low-rank approximation and they usually proceed by multiplying the matrix with random dimension reduction matrices (DRMs). Applying such algorithms directly to $A(t)$ would involve different, independent DRMs for every $t$, which is not only expensive but also leads to inherently non-smooth approximations. In this work, we propose to use constant DRMs, that is, $A(t)$ is multiplied with the same DRM for every $t$. The resulting parameter-dependent extensions of two popular randomized algorithms, the randomized singular value decomposition and the generalized Nystr\"{o}m method, are computationally attractive, especially when $A(t)$ admits an affine linear decomposition with respect to $t$. We perform a probabilistic analysis for both algorithms, deriving bounds on the expected value as well as failure probabilities for the $L^2$ approximation error when using Gaussian random DRMs. Both, the theoretical results and numerical experiments, show that the use of constant DRMs does not impair their effectiveness; our methods reliably return quasi-best low-rank approximations.
Discrete data are abundant and often arise as counts or rounded data. These data commonly exhibit complex distributional features such as zero-inflation, over-/under-dispersion, boundedness, and heaping, which render many parametric models inadequate. Yet even for parametric regression models, approximations such as MCMC typically are needed for posterior inference. This paper introduces a Bayesian modeling and algorithmic framework that enables semiparametric regression analysis for discrete data with Monte Carlo (not MCMC) sampling. The proposed approach pairs a nonparametric marginal model with a latent linear regression model to encourage both flexibility and interpretability, and delivers posterior consistency even under model misspecification. For a parametric or large-sample approximation of this model, we identify a class of conjugate priors with (pseudo) closed-form posteriors. All posterior and predictive distributions are available analytically or via direct Monte Carlo sampling. These tools are broadly useful for linear regression, nonlinear models via basis expansions, and variable selection with discrete data. Simulation studies demonstrate significant advantages in computing, prediction, estimation, and selection relative to existing alternatives. This novel approach is applied successfully to self-reported mental health data that exhibit zero-inflation, overdispersion, boundedness, and heaping.
We prove a convergence theorem for U-statistics of degree two, where the data dimension $d$ is allowed to scale with sample size $n$. We find that the limiting distribution of a U-statistic undergoes a phase transition from the non-degenerate Gaussian limit to the degenerate limit, regardless of its degeneracy and depending only on a moment ratio. A surprising consequence is that a non-degenerate U-statistic in high dimensions can have a non-Gaussian limit with a larger variance and asymmetric distribution. Our bounds are valid for any finite $n$ and $d$, independent of individual eigenvalues of the underlying function, and dimension-independent under a mild assumption. As an application, we apply our theory to two popular kernel-based distribution tests, MMD and KSD, whose high-dimensional performance has been challenging to study. In a simple empirical setting, our results correctly predict how the test power at a fixed threshold scales with $d$ and the bandwidth.
Variational Inference (VI) is an attractive alternative to Markov Chain Monte Carlo (MCMC) due to its computational efficiency in the case of large datasets and/or complex models with high-dimensional parameters. However, evaluating the accuracy of variational approximations remains a challenge. Existing methods characterize the quality of the whole variational distribution, which is almost always poor in realistic applications, even if specific posterior functionals such as the component-wise means or variances are accurate. Hence, these diagnostics are of practical value only in limited circumstances. To address this issue, we propose the TArgeted Diagnostic for Distribution Approximation Accuracy (TADDAA), which uses many short parallel MCMC chains to obtain lower bounds on the error of each posterior functional of interest. We also develop a reliability check for TADDAA to determine when the lower bounds should not be trusted. Numerical experiments validate the practical utility and computational efficiency of our approach on a range of synthetic distributions and real-data examples, including sparse logistic regression and Bayesian neural network models.
This work investigates the use of a Deep Neural Network (DNN) to perform an estimation of the Weapon Engagement Zone (WEZ) maximum launch range. The WEZ allows the pilot to identify an airspace in which the available missile has a more significant probability of successfully engaging a particular target, i.e., a hypothetical area surrounding an aircraft in which an adversary is vulnerable to a shot. We propose an approach to determine the WEZ of a given missile using 50,000 simulated launches in variate conditions. These simulations are used to train a DNN that can predict the WEZ when the aircraft finds itself on different firing conditions, with a coefficient of determination of 0.99. It provides another procedure concerning preceding research since it employs a non-discretized model, i.e., it considers all directions of the WEZ at once, which has not been done previously. Additionally, the proposed method uses an experimental design that allows for fewer simulation runs, providing faster model training.