亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of detecting (testing) Gaussian stochastic sequences (signals) with imprecisely known means and covariance matrices. The alternative is independent identically distributed zero-mean Gaussian random variables with unit variances. For a given false alarm (1st-kind error) probability, the quality of minimax detection is given by the best miss probability (2nd-kind error probability) exponent over a growing observation horizon. We explore the maximal set of means and covariance matrices (composite hypothesis) such that its minimax testing can be replaced with testing a single particular pair consisting of a mean and a covariance matrix (simple hypothesis) without degrading the detection exponent. We completely describe this maximal set.

相關內容

In many fields of biomedical sciences, it is common that random variables are measured repeatedly across different subjects. In such a repeated measurement setting, dependence structures among random variables that are between subjects and within a subject may be different, and should be estimated differently. Ignoring this fact may lead to questionable or even erroneous scientific conclusions. In this paper, we study the problem of sparse and positive-definite estimation of between-subject and within-subject covariance matrices for high-dimensional repeated measurements. Our estimators are defined as solutions to convex optimization problems, which can be solved efficiently. We establish estimation error rate for our proposed estimators of the two target matrices, and demonstrate their favorable performance through theoretical analysis and comprehensive simulation studies. We further apply our methods to recover two covariance graphs of clinical variables from hemodialysis patients.

The ability of an agent to perform well in new and unseen environments is a crucial aspect of intelligence. In machine learning, this ability is referred to as strong or out-of-distribution generalization. However, simply considering differences in data distributions is not sufficient to fully capture differences in environments. In the present paper, we assay out-of-variable generalization, which refers to an agent's ability to handle new situations that involve variables never jointly observed before. We expect that such ability is important also for AI-driven scientific discovery: humans, too, explore 'Nature' by probing, observing and measuring subsets of variables at one time. Mathematically, it requires efficient re-use of past marginal knowledge, i.e., knowledge over subsets of variables. We study this problem, focusing on prediction tasks that involve observing overlapping, yet distinct, sets of causal parents. We show that the residual distribution of one environment encodes the partial derivative of the true generating function with respect to the unobserved causal parent. Hence, learning from the residual allows zero-shot prediction even when we never observe the outcome variable in the other environment.

Robust inference based on the minimization of statistical divergences has proved to be a useful alternative to classical techniques based on maximum likelihood and related methods. Basu et al. (1998) introduced the density power divergence (DPD) family as a measure of discrepancy between two probability density functions and used this family for robust estimation of the parameter for independent and identically distributed data. Ghosh et al. (2017) proposed a more general class of divergence measures, namely the S-divergence family and discussed its usefulness in robust parametric estimation through several asymptotic properties and some numerical illustrations. In this paper, we develop the results concerning the asymptotic breakdown point for the minimum S-divergence estimators (in particular the minimum DPD estimator) under general model setups. The primary result of this paper provides lower bounds to the asymptotic breakdown point of these estimators which are independent of the dimension of the data, in turn corroborating their usefulness in robust inference under high dimensional data.

We provide a novel Neural Network architecture that can: i) output R-matrix for a given quantum integrable spin chain, ii) search for an integrable Hamiltonian and the corresponding R-matrix under assumptions of certain symmetries or other restrictions, iii) explore the space of Hamiltonians around already learned models and reconstruct the family of integrable spin chains which they belong to. The neural network training is done by minimizing loss functions encoding Yang-Baxter equation, regularity and other model-specific restrictions such as hermiticity. Holomorphy is implemented via the choice of activation functions. We demonstrate the work of our Neural Network on the two-dimensional spin chains of difference form. In particular, we reconstruct the R-matrices for all 14 classes. We also demonstrate its utility as an \textit{Explorer}, scanning a certain subspace of Hamiltonians and identifying integrable classes after clusterisation. The last strategy can be used in future to carve out the map of integrable spin chains in higher dimensions and in more general settings where no analytical methods are available.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in incorrect outputs. To make DL more robust, several posthoc anomaly detection techniques to detect (and discard) these anomalous samples have been proposed in the recent past. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for DL based applications. We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches. We discuss various techniques in each of the categories and provide the relative strengths and weaknesses of the approaches. Our goal in this survey is to provide an easier yet better understanding of the techniques belonging to different categories in which research has been done on this topic. Finally, we highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.

The prevalence of networked sensors and actuators in many real-world systems such as smart buildings, factories, power plants, and data centers generate substantial amounts of multivariate time series data for these systems. The rich sensor data can be continuously monitored for intrusion events through anomaly detection. However, conventional threshold-based anomaly detection methods are inadequate due to the dynamic complexities of these systems, while supervised machine learning methods are unable to exploit the large amounts of data due to the lack of labeled data. On the other hand, current unsupervised machine learning approaches have not fully exploited the spatial-temporal correlation and other dependencies amongst the multiple variables (sensors/actuators) in the system for detecting anomalies. In this work, we propose an unsupervised multivariate anomaly detection method based on Generative Adversarial Networks (GANs). Instead of treating each data stream independently, our proposed MAD-GAN framework considers the entire variable set concurrently to capture the latent interactions amongst the variables. We also fully exploit both the generator and discriminator produced by the GAN, using a novel anomaly score called DR-score to detect anomalies by discrimination and reconstruction. We have tested our proposed MAD-GAN using two recent datasets collected from real-world CPS: the Secure Water Treatment (SWaT) and the Water Distribution (WADI) datasets. Our experimental results showed that the proposed MAD-GAN is effective in reporting anomalies caused by various cyber-intrusions compared in these complex real-world systems.

Salient object detection is a problem that has been considered in detail and many solutions proposed. In this paper, we argue that work to date has addressed a problem that is relatively ill-posed. Specifically, there is not universal agreement about what constitutes a salient object when multiple observers are queried. This implies that some objects are more likely to be judged salient than others, and implies a relative rank exists on salient objects. The solution presented in this paper solves this more general problem that considers relative rank, and we propose data and metrics suitable to measuring success in a relative objects saliency landscape. A novel deep learning solution is proposed based on a hierarchical representation of relative saliency and stage-wise refinement. We also show that the problem of salient object subitizing can be addressed with the same network, and our approach exceeds performance of any prior work across all metrics considered (both traditional and newly proposed).

北京阿比特科技有限公司