We present a numerical approximation of the solutions of the Euler equations with a gravitational source term. On the basis of a Suliciu type relaxation model with two relaxation speeds, we construct an approximate Riemann solver, which is used in a first order Godunov-type finite volume scheme. This scheme can preserve both stationary solutions and the low Mach limit to the corresponding incompressible equations. In addition, we prove that our scheme preserves the positivity of density and internal energy, that it is entropy satisfying and also guarantees not to give rise to numerical checkerboard modes in the incompressible limit. Later we give an extension to second order that preserves these properties. Finally, the theoretical properties are investigated in numerical experiments.
Numerical stabilization is often used to eliminate (alleviate) the spurious oscillations generally produced by full order models (FOMs) in under-resolved or marginally-resolved simulations of convection-dominated flows. In this paper we investigate the role of numerical stabilization in reduced order models (ROMs) of convection-dominated, marginally-resolved flows. Specifically, we investigate the FOM-ROM consistency, i.e., whether the numerical stabilization is beneficial both at the FOM and the ROM level. As a numerical stabilization strategy, we focus on the evolve-filter-relax (EFR) regularization algorithm, which centers around spatial filtering. To investigate the FOM-ROM consistency, we consider two ROM strategies: (i) the EFR-ROM, in which the EFR stabilization is used at the FOM level, but not at the ROM level; and (ii) the EFR-EFRROM, in which the EFR stabilization is used both at the FOM and at the ROM level. We compare the EFR-ROM with the EFR-EFRROM in the numerical simulation of a 2D flow past a circular cylinder in the convection-dominated, marginally-resolved regime. We also perform model reduction with respect to both time and Reynolds number. Our numerical investigation shows that the EFR-EFRROM is more accurate than the EFR-ROM, which suggests that FOM-ROM consistency is beneficial in convection-dominated, marginally-resolved flows.
Let $G=(V,E)$ be an undirected unweighted planar graph. Consider a vector storing the distances from an arbitrary vertex $v$ to all vertices $S = \{ s_1 , s_2 , \ldots , s_k \}$ of a single face in their cyclic order. The pattern of $v$ is obtained by taking the difference between every pair of consecutive values of this vector. In STOC'19, Li and Parter used a VC-dimension argument to show that in planar graphs, the number of distinct patterns, denoted $x$, is only $O(k^3)$. This resulted in a simple compression scheme requiring $\tilde O(\min \{ k^4+|T|, k\cdot |T|\})$ space to encode the distances between $S$ and a subset of terminal vertices $T \subseteq V$. This is known as the Okamura-Seymour metric compression problem. We give an alternative proof of the $x=O(k^3)$ bound that exploits planarity beyond the VC-dimension argument. Namely, our proof relies on cut-cycle duality, as well as on the fact that distances among vertices of $S$ are bounded by $k$. Our method implies the following: (1) An $\tilde{O}(x+k+|T|)$ space compression of the Okamura-Seymour metric, thus improving the compression of Li and Parter to $\tilde O(\min \{k^3+|T|,k \cdot |T| \})$. (2) An optimal $\tilde{O}(k+|T|)$ space compression of the Okamura-Seymour metric, in the case where the vertices of $T$ induce a connected component in $G$. (3) A tight bound of $x = \Theta(k^2)$ for the family of Halin graphs, whereas the VC-dimension argument is limited to showing $x=O(k^3)$.
We provide a combinatorial study of split matroids, a class that was motivated by the study of matroid polytopes from a tropical geometry point of view. A nice feature of split matroids is that they generalize paving matroids, while being closed under duality and taking minors. Furthermore, these matroids proved to be useful in giving exact asymptotic bounds for the dimension of the Dressian, and also implied new results on the rays of the tropical Grassmannians. In the present paper, we introduce the notion of elementary split matroids, a subclass of split matroids that contains all connected split matroids. We give a hypergraph characterization of elementary split matroids in terms of independent sets, and show that the proposed class is closed not only under duality and taking minors but also truncation. We further show that, in contrast to split matroids, the proposed class can be characterized by a single forbidden minor. As an application, we provide a complete list of binary split matroids.
A stabilized finite element method is introduced for the simulation of time-periodic creeping flows, such as those found in the cardiorespiratory systems. The new technique, which is formulated in the frequency rather than time domain, strictly uses real arithmetics and permits the use of similar shape functions for pressure and velocity for ease of implementation. It involves the addition of the Laplacian of pressure to the continuity equation with a complex-valued stabilization parameter that is derived systematically from the momentum equation. The numerical experiments show the excellent accuracy and robustness of the proposed method in simulating flows in complex and canonical geometries for a wide range of conditions. The present method significantly outperforms a traditional solver in terms of both computational cost and scalability, which lowers the overall solution turnover time by several orders of magnitude.
The optimal design of magnetic devices becomes intractable using current computational methods when the number of design parameters is high. The emerging physics-informed deep learning framework has the potential to alleviate this curse of dimensionality. The objective of this paper is to investigate the ability of physics-informed neural networks to learn the magnetic field response as a function of design parameters in the context of a two-dimensional (2-D) magnetostatic problem. Our approach is as follows. We derive the variational principle for 2-D parametric magnetostatic problems, and prove the existence and uniqueness of the solution that satisfies the equations of the governing physics, i.e., Maxwell's equations. We use a deep neural network (DNN) to represent the magnetic field as a function of space and a total of ten parameters that describe geometric features and operating point conditions. We train the DNN by minimizing the physics-informed loss function using a variant of stochastic gradient descent. Subsequently, we conduct systematic numerical studies using a parametric EI-core electromagnet problem. In these studies, we vary the DNN architecture trying more than one hundred different possibilities. For each study, we evaluate the accuracy of the DNN by comparing its predictions to those of finite element analysis. In an exhaustive non-parametric study, we observe that sufficiently parameterized dense networks result in relative errors of less than 1%. Residual connections always improve relative errors for the same number of training iterations. Also, we observe that Fourier encoding features aligned with the device geometry do improve the rate of convergence, albeit higher-order harmonics are not necessary. Finally, we demonstrate our approach on a ten-dimensional problem with parameterized geometry.
In this paper we focus on modules over a finite chain ring $\mathcal{R}$ of size $q^s$. We compute the density of free modules of $\mathcal{R}^n$, where we separately treat the asymptotics in $n,q$ and $s$. In particular, we focus on two cases: one where we fix the length of the module and one where we fix the rank of the module. In both cases, the density results can be bounded by the Andrews-Gordon identities. We also study the asymptotic behaviour of modules generated by random matrices over $\mathcal{R}$. Since linear codes over $\mathcal{R}$ are submodules of $\mathcal{R}^n$ we get direct implications for coding theory. For example, we show that random codes achieve the Gilbert-Varshamov bound with high probability.
Tensors, i.e., multi-linear functions, are a fundamental building block of machine learning algorithms. In order to train on large data-sets, it is common practice to distribute the computation amongst workers. However, stragglers and other faults can severely impact the performance and overall training time. A novel strategy to mitigate these failures is the use of coded computation. We introduce a new metric for analysis called the typical recovery threshold, which focuses on the most likely event and provide a novel construction of distributed coded tensor operations which are optimal with this measure. We show that our general framework encompasses many other computational schemes and metrics as a special case. In particular, we prove that the recovery threshold and the tensor rank can be recovered as a special case of the typical recovery threshold when the probability of noise, i.e., a fault, is equal to zero, thereby providing a noisy generalization of noiseless computation as a serendipitous result. Far from being a purely theoretical construction, these definitions lead us to practical random code constructions, i.e., locally random p-adic alloy codes, which are optimal with respect to the measures. We analyze experiments conducted on Amazon EC2 and establish that they are faster and more numerically stable than many other benchmark computation schemes in practice, as is predicted by theory.
We introduce a new family of deep neural network models. Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. The output of the network is computed using a black-box differential equation solver. These continuous-depth models have constant memory cost, adapt their evaluation strategy to each input, and can explicitly trade numerical precision for speed. We demonstrate these properties in continuous-depth residual networks and continuous-time latent variable models. We also construct continuous normalizing flows, a generative model that can train by maximum likelihood, without partitioning or ordering the data dimensions. For training, we show how to scalably backpropagate through any ODE solver, without access to its internal operations. This allows end-to-end training of ODEs within larger models.
In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.
This paper presents a safety-aware learning framework that employs an adaptive model learning method together with barrier certificates for systems with possibly nonstationary agent dynamics. To extract the dynamic structure of the model, we use a sparse optimization technique, and the resulting model will be used in combination with control barrier certificates which constrain feedback controllers only when safety is about to be violated. Under some mild assumptions, solutions to the constrained feedback-controller optimization are guaranteed to be globally optimal, and the monotonic improvement of a feedback controller is thus ensured. In addition, we reformulate the (action-)value function approximation to make any kernel-based nonlinear function estimation method applicable. We then employ a state-of-the-art kernel adaptive filtering technique for the (action-)value function approximation. The resulting framework is verified experimentally on a brushbot, whose dynamics is unknown and highly complex.