This paper presents a transient forward harmonic adjoint sensitivity analysis (TFHA), which is a combination of a transient forward circuit analysis with a harmonic balance based adjoint sensitivity analysis. TFHA provides sensitivities of quantities of interest from time-periodic problems w.r.t. many design parameters, as used in the design process of power-electronics devices. The TFHA shows advantages in applications where the harmonic balance based adjoint sensitivity analysis or finite difference approaches for sensitivity analysis perform poorly. In contrast to existing methods, the TFHA can be used in combination with arbitrary forward solvers, i.e. general transient solvers.
Approximate value iteration (AVI) is a family of algorithms for reinforcement learning (RL) that aims to obtain an approximation of the optimal value function. Generally, AVI algorithms implement an iterated procedure where each step consists of (i) an application of the Bellman operator and (ii) a projection step into a considered function space. Notoriously, the Bellman operator leverages transition samples, which strongly determine its behavior, as uninformative samples can result in negligible updates or long detours, whose detrimental effects are further exacerbated by the computationally intensive projection step. To address these issues, we propose a novel alternative approach based on learning an approximate version of the Bellman operator rather than estimating it through samples as in AVI approaches. This way, we are able to (i) generalize across transition samples and (ii) avoid the computationally intensive projection step. For this reason, we call our novel operator projected Bellman operator (PBO). We formulate an optimization problem to learn PBO for generic sequential decision-making problems, and we theoretically analyze its properties in two representative classes of RL problems. Furthermore, we theoretically study our approach under the lens of AVI and devise algorithmic implementations to learn PBO in offline and online settings by leveraging neural network parameterizations. Finally, we empirically showcase the benefits of PBO w.r.t. the regular Bellman operator on several RL problems.
This paper proposes Group Activity Feature (GAF) learning in which features of multi-person activity are learned as a compact latent vector. Unlike prior work in which the manual annotation of group activities is required for supervised learning, our method learns the GAF through person attribute prediction without group activity annotations. By learning the whole network in an end-to-end manner so that the GAF is required for predicting the person attributes of people in a group, the GAF is trained as the features of multi-person activity. As a person attribute, we propose to use a person's action class and appearance features because the former is easy to annotate due to its simpleness, and the latter requires no manual annotation. In addition, we introduce a location-guided attribute prediction to disentangle the complex GAF for extracting the features of each target person properly. Various experimental results validate that our method outperforms SOTA methods quantitatively and qualitatively on two public datasets. Visualization of our GAF also demonstrates that our method learns the GAF representing fined-grained group activity classes. Code: //github.com/chihina/GAFL-CVPR2024.
We extend the theory of locally checkable labeling problems (LCLs) from the classical LOCAL model to a number of other models that have been studied recently, including the quantum-LOCAL model, finitely-dependent processes, non-signaling model, dynamic-LOCAL model, and online-LOCAL model [e.g. STOC 2024, ICALP 2023]. First, we demonstrate the advantage that finitely-dependent processes have over the classical LOCAL model. We show that all LCL problems solvable with locality $O(\log^* n)$ in the LOCAL model admit a finitely-dependent distribution (with constant locality). In particular, this gives a finitely-dependent coloring for regular trees, answering an open question by Holroyd [2023]. This also introduces a new formal barrier for understanding the distributed quantum advantage: it is not possible to exclude quantum advantage for any LCL in the $\Theta(\log^* n)$ complexity class by using non-signaling arguments. Second, we put limits on the capabilities of all of these models. To this end, we introduce a model called randomized online-LOCAL, which is strong enough to simulate e.g. SLOCAL and dynamic-LOCAL, and we show that it is also strong enough to simulate any non-signaling distribution and hence any quantum-LOCAL algorithm. We prove the following result for trees: if we can solve an LCL problem with locality $o(\log^{(5)} n)$ in the randomized online-LOCAL model, we can solve it with locality $O(\log^* n)$ in the classical deterministic LOCAL model. Put together, these results show that in trees the set of LCLs that can be solved with locality $O(\log^* n)$ is the same across all these models: locality $O(\log^* n)$ in quantum-LOCAL, non-signaling model, dynamic-LOCAL, or online-LOCAL is not stronger than locality $O(\log^* n)$ in the classical deterministic LOCAL model.
Policy gradient methods are a vital ingredient behind the success of modern reinforcement learning. Modern policy gradient methods, although successful, introduce a residual error in gradient estimation. In this work, we argue that this residual term is significant and correcting for it could potentially improve sample-complexity of reinforcement learning methods. To that end, we propose log density gradient to estimate the policy gradient, which corrects for this residual error term. Log density gradient method computes policy gradient by utilising the state-action discounted distributional formulation. We first present the equations needed to exactly find the log density gradient for a tabular Markov Decision Processes (MDPs). For more complex environments, we propose a temporal difference (TD) method that approximates log density gradient by utilizing backward on-policy samples. Since backward sampling from a Markov chain is highly restrictive we also propose a min-max optimization that can approximate log density gradient using just on-policy samples. We also prove uniqueness, and convergence under linear function approximation, for this min-max optimization. Finally, we show that the sample complexity of our min-max optimization to be of the order of $m^{-1/2}$, where $m$ is the number of on-policy samples. We also demonstrate a proof-of-concept for our log density gradient method on gridworld environment, and observe that our method is able to improve upon the classical policy gradient method by a clear margin, thus indicating a promising novel direction to develop reinforcement learning algorithms that require fewer samples.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.
This paper presents a new approach for assembling graph neural networks based on framelet transforms. The latter provides a multi-scale representation for graph-structured data. With the framelet system, we can decompose the graph feature into low-pass and high-pass frequencies as extracted features for network training, which then defines a framelet-based graph convolution. The framelet decomposition naturally induces a graph pooling strategy by aggregating the graph feature into low-pass and high-pass spectra, which considers both the feature values and geometry of the graph data and conserves the total information. The graph neural networks with the proposed framelet convolution and pooling achieve state-of-the-art performance in many types of node and graph prediction tasks. Moreover, we propose shrinkage as a new activation for the framelet convolution, which thresholds the high-frequency information at different scales. Compared to ReLU, shrinkage in framelet convolution improves the graph neural network model in terms of denoising and signal compression: noises in both node and structure can be significantly reduced by accurately cutting off the high-pass coefficients from framelet decomposition, and the signal can be compressed to less than half its original size with the prediction performance well preserved.
We introduce an approach for deep reinforcement learning (RL) that improves upon the efficiency, generalization capacity, and interpretability of conventional approaches through structured perception and relational reasoning. It uses self-attention to iteratively reason about the relations between entities in a scene and to guide a model-free policy. Our results show that in a novel navigation and planning task called Box-World, our agent finds interpretable solutions that improve upon baselines in terms of sample complexity, ability to generalize to more complex scenes than experienced during training, and overall performance. In the StarCraft II Learning Environment, our agent achieves state-of-the-art performance on six mini-games -- surpassing human grandmaster performance on four. By considering architectural inductive biases, our work opens new directions for overcoming important, but stubborn, challenges in deep RL.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.
This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a certain object part. We do not need any annotations of object parts or textures to supervise the learning process. Instead, the interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. Our method can be applied to different types of CNNs with different structures. The clear knowledge representation in an interpretable CNN can help people understand the logics inside a CNN, i.e., based on which patterns the CNN makes the decision. Experiments showed that filters in an interpretable CNN were more semantically meaningful than those in traditional CNNs.