Recently, peoples awareness of online purchases has significantly risen. This has given rise to online retail platforms and the need for a better understanding of customer purchasing behaviour. Retail companies are pressed with the need to deal with a high volume of customer purchases, which requires sophisticated approaches to perform more accurate and efficient customer segmentation. Customer segmentation is a marketing analytical tool that aids customer-centric service and thus enhances profitability. In this paper, we aim to develop a customer segmentation model to improve decision-making processes in the retail market industry. To achieve this, we employed a UK-based online retail dataset obtained from the UCI machine learning repository. The retail dataset consists of 541,909 customer records and eight features. Our study adopted the RFM (recency, frequency, and monetary) framework to quantify customer values. Thereafter, we compared several state-of-the-art (SOTA) clustering algorithms, namely, K-means clustering, the Gaussian mixture model (GMM), density-based spatial clustering of applications with noise (DBSCAN), agglomerative clustering, and balanced iterative reducing and clustering using hierarchies (BIRCH). The results showed the GMM outperformed other approaches, with a Silhouette Score of 0.80.
Swarm robots, which are inspired from the way insects behave collectively in order to achieve a common goal, have become a major part of research with applications involving search and rescue, area exploration, surveillance etc. In this paper, we present a swarm of robots that do not require individual extrinsic sensors to sense the environment but instead use a single central camera to locate and map the swarm. The robots can be easily built using readily available components with the main chassis being 3D printed, making the system low-cost, low-maintenance, and easy to replicate. We describe Zutu's hardware and software architecture, the algorithms to map the robots to the real world, and some experiments conducted using four of our robots. Eventually, we conclude the possible applications of our system in research, education, and industries.
In the realm of Reinforcement Learning (RL), online RL is often conceptualized as an optimization problem, where an algorithm interacts with an unknown environment to minimize cumulative regret. In a stationary setting, strong theoretical guarantees, like a sublinear ($\sqrt{T}$) regret bound, can be obtained, which typically implies the convergence to an optimal policy and the cessation of exploration. However, these theoretical setups often oversimplify the complexities encountered in real-world RL implementations, where tasks arrive sequentially with substantial changes between tasks and the algorithm may not be allowed to adaptively learn within certain tasks. We study the changes beyond the outcome distributions, encompassing changes in the reward designs (mappings from outcomes to rewards) and the permissible policy spaces. Our results reveal the fallacy of myopically minimizing regret within each task: obtaining optimal regret rates in the early tasks may lead to worse rates in the subsequent ones, even when the outcome distributions stay the same. To realize the optimal cumulative regret bound across all the tasks, the algorithm has to overly explore in the earlier tasks. This theoretical insight is practically significant, suggesting that due to unanticipated changes (e.g., rapid technological development or human-in-the-loop involvement) between tasks, the algorithm needs to explore more than it would in the usual stationary setting within each task. Such implication resonates with the common practice of using clipped policies in mobile health clinical trials and maintaining a fixed rate of $\epsilon$-greedy exploration in robotic learning.
Dense retrieval has become the new paradigm in passage retrieval. Despite its effectiveness on typo-free queries, it is not robust when dealing with queries that contain typos. Current works on improving the typo-robustness of dense retrievers combine (i) data augmentation to obtain the typoed queries during training time with (ii) additional robustifying subtasks that aim to align the original, typo-free queries with their typoed variants. Even though multiple typoed variants are available as positive samples per query, some methods assume a single positive sample and a set of negative ones per anchor and tackle the robustifying subtask with contrastive learning; therefore, making insufficient use of the multiple positives (typoed queries). In contrast, in this work, we argue that all available positives can be used at the same time and employ contrastive learning that supports multiple positives (multi-positive). Experimental results on two datasets show that our proposed approach of leveraging all positives simultaneously and employing multi-positive contrastive learning on the robustifying subtask yields improvements in robustness against using contrastive learning with a single positive.
Variations of the Flip-It game have been applied to model network cyber operations. While Flip-It can accurately express uncertainty and loss of control, it imposes no essential resource constraints for operations. Capture the flag (CTF) style competitive games, such as Flip-It , entail uncertainties and loss of control, but also impose realistic constraints on resource use. As such, they bear a closer resemblance to actual cyber operations. We formalize a dynamical network control game for CTF competitions and detail the static game for each time step. The static game can be reformulated as instances of a novel optimization problem called Adversarial Knapsack (AK) or Dueling Knapsack (DK) when there are only two players. We define the Adversarial Knapsack optimization problems as a system of interacting Weighted Knapsack problems, and illustrate its applications to general scenarios involving multiple agents with conflicting optimization goals, e.g., cyber operations and CTF games in particular. Common awareness of the scenario, rewards, and costs will set the stage for a non-cooperative game. Critically, rational players may second guess that their AK solution -- with a better response and higher reward -- is possible if opponents predictably play their AK optimal solutions. Thus, secondary reasoning which such as belief modeling of opponents play can be anticipated for rational players and will introduce a type of non-stability where players maneuver for slight reward differentials. To analyze this, we provide the best-response algorithms and simulation software to consider how rational agents may heuristically search for maneuvers. We further summarize insights offered by the game model by predicting that metrics such as Common Vulnerability Scoring System (CVSS) may intensify the secondary reasoning in cyber operations.
Powerful generative Large Language Models (LLMs) are becoming popular tools amongst the general public as question-answering systems, and are being utilised by vulnerable groups such as children. With children increasingly interacting with these tools, it is imperative for researchers to scrutinise the safety of LLMs, especially for applications that could lead to serious outcomes, such as online child safety queries. In this paper, the efficacy of LLMs for online grooming prevention is explored both for identifying and avoiding grooming through advice generation, and the impact of prompt design on model performance is investigated by varying the provided context and prompt specificity. In results reflecting over 6,000 LLM interactions, we find that no models were clearly appropriate for online grooming prevention, with an observed lack of consistency in behaviours, and potential for harmful answer generation, especially from open-source models. We outline where and how models fall short, providing suggestions for improvement, and identify prompt designs that heavily altered model performance in troubling ways, with findings that can be used to inform best practice usage guides.
Legal expert systems routinely rely on date computations to determine the eligibility of a citizen to social benefits or whether an application has been filed on time. Unfortunately, date arithmetic exhibits many corner cases, which are handled differently from one library to the other, making faithfully transcribing the law into code error-prone, and possibly leading to heavy financial and legal consequences for users. In this work, we aim to provide a solid foundation for date arithmetic working on days, months and years. We first present a novel, formal semantics for date computations, and formally establish several semantic properties through a mechanization in the F* proof assistant. Building upon this semantics, we then propose a static analysis by abstract interpretation to automatically detect ambiguities in date computations. We finally integrate our approach in the Catala language, a recent domain-specific language for formalizing computational law, and use it to analyze the Catala implementation of the French housing benefits, leading to the discovery of several date-related ambiguities.
For the purpose of efficient and cost-effective large-scale data labeling, crowdsourcing is increasingly being utilized. To guarantee the quality of data labeling, multiple annotations need to be collected for each data sample, and truth inference algorithms have been developed to accurately infer the true labels. Despite previous studies having released public datasets to evaluate the efficacy of truth inference algorithms, these have typically focused on a single type of crowdsourcing task and neglected the temporal information associated with workers' annotation activities. These limitations significantly restrict the practical applicability of these algorithms, particularly in the context of long-term and online truth inference. In this paper, we introduce a substantial crowdsourcing annotation dataset collected from a real-world crowdsourcing platform. This dataset comprises approximately two thousand workers, one million tasks, and six million annotations. The data was gathered over a period of approximately six months from various types of tasks, and the timestamps of each annotation were preserved. We analyze the characteristics of the dataset from multiple perspectives and evaluate the effectiveness of several representative truth inference algorithms on this dataset. We anticipate that this dataset will stimulate future research on tracking workers' abilities over time in relation to different types of tasks, as well as enhancing online truth inference.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.