Physics-Informed Neural Networks (PINNs) have emerged as an iconic machine learning approach for solving Partial Differential Equations (PDEs). Although its variants have achieved significant progress, the empirical success of utilising feature mapping from the wider Implicit Neural Representations studies has been substantially neglected. We investigate the training dynamics of PINNs with a feature mapping layer via the limiting Conjugate Kernel and Neural Tangent Kernel, which sheds light on the convergence and generalisation of the model. We also show the inadequacy of commonly used Fourier-based feature mapping in some scenarios and propose the conditional positive definite Radial Basis Function as a better alternative. The empirical results reveal the efficacy of our method in diverse forward and inverse problem sets. This simple technique can be easily implemented in coordinate input networks and benefits the broad PINNs research.
PECR is a formal system designed to explore the properties of computability of programs on a real-world computer. As such PECR incorporates the finite resources of the machine upon which a program is to be executed. The main features of the formal system will be presented and its practical applications will be discussed. Of particular interest is the implementation of the formal system to the exploration of the laws of nature that lead to rigorous constructions of computer models of real-world phenomena.
Multiple Instance Learning (MIL) is a weakly supervised paradigm that has been successfully applied to many different scientific areas and is particularly well suited to medical imaging. Probabilistic MIL methods, and more specifically Gaussian Processes (GPs), have achieved excellent results due to their high expressiveness and uncertainty quantification capabilities. One of the most successful GP-based MIL methods, VGPMIL, resorts to a variational bound to handle the intractability of the logistic function. Here, we formulate VGPMIL using P\'olya-Gamma random variables. This approach yields the same variational posterior approximations as the original VGPMIL, which is a consequence of the two representations that the Hyperbolic Secant distribution admits. This leads us to propose a general GP-based MIL method that takes different forms by simply leveraging distributions other than the Hyperbolic Secant one. Using the Gamma distribution we arrive at a new approach that obtains competitive or superior predictive performance and efficiency. This is validated in a comprehensive experimental study including one synthetic MIL dataset, two well-known MIL benchmarks, and a real-world medical problem. We expect that this work provides useful ideas beyond MIL that can foster further research in the field.
We study the problem of testing and recovering the hidden $k$-clique Ferromagnetic correlation in the planted Random Field Curie-Weiss model (a.k.a. the pRFCW model). The pRFCW model is a random effect Ising model that exhibits richer phase diagrams both statistically and physically than the standard Curie-Weiss model. Using an alternative characterization of parameter regimes as 'temperatures' and the mean values as 'outer magnetic fields,' we establish the minimax optimal detection rates and recovery rates. The results consist of $7$ distinctive phases for testing and $3$ phases for exact recovery. Our results also imply that the randomness of the outer magnetic field contributes to countable possible convergence rates, which are not observed in the fixed field model. As a byproduct of the proof techniques, we provide two new mathematical results: (1) A family of tail bounds for the average magnetization of the Random Field Curie-Weiss model (a.k.a. the RFCW model) across all temperatures and arbitrary outer fields. (2) A sharp estimate of the information divergence between RFCW models. These play pivotal roles in establishing the major theoretical results in this paper. Additionally, we show that the mathematical structure involved in the pRFCW hidden clique inference problem resembles a 'sparse PCA-like' problem for discrete data. The richer statistical phases than the long-studied Gaussian counterpart shed new light on the theoretical insight of sparse PCA for discrete data.
In Coevolving Latent Space Networks with Attractors (CLSNA) models, nodes in a latent space represent social actors, and edges indicate their dynamic interactions. Attractors are added at the latent level to capture the notion of attractive and repulsive forces between nodes, borrowing from dynamical systems theory. However, CLSNA reliance on MCMC estimation makes scaling difficult, and the requirement for nodes to be present throughout the study period limit practical applications. We address these issues by (i) introducing a Stochastic gradient descent (SGD) parameter estimation method, (ii) developing a novel approach for uncertainty quantification using SGD, and (iii) extending the model to allow nodes to join and leave over time. Simulation results show that our extensions result in little loss of accuracy compared to MCMC, but can scale to much larger networks. We apply our approach to the longitudinal social networks of members of US Congress on the social media platform X. Accounting for node dynamics overcomes selection bias in the network and uncovers uniquely and increasingly repulsive forces within the Republican Party.
Multi-sequence magnetic resonance imaging (MRI) has found wide applications in both modern clinical studies and deep learning research. However, in clinical practice, it frequently occurs that one or more of the MRI sequences are missing due to different image acquisition protocols or contrast agent contraindications of patients, limiting the utilization of deep learning models trained on multi-sequence data. One promising approach is to leverage generative models to synthesize the missing sequences, which can serve as a surrogate acquisition. State-of-the-art methods tackling this problem are based on convolutional neural networks (CNN) which usually suffer from spectral biases, resulting in poor reconstruction of high-frequency fine details. In this paper, we propose Conditional Neural fields with Shift modulation (CoNeS), a model that takes voxel coordinates as input and learns a representation of the target images for multi-sequence MRI translation. The proposed model uses a multi-layer perceptron (MLP) instead of a CNN as the decoder for pixel-to-pixel mapping. Hence, each target image is represented as a neural field that is conditioned on the source image via shift modulation with a learned latent code. Experiments on BraTS 2018 and an in-house clinical dataset of vestibular schwannoma patients showed that the proposed method outperformed state-of-the-art methods for multi-sequence MRI translation both visually and quantitatively. Moreover, we conducted spectral analysis, showing that CoNeS was able to overcome the spectral bias issue common in conventional CNN models. To further evaluate the usage of synthesized images in clinical downstream tasks, we tested a segmentation network using the synthesized images at inference.
In recent works on the theory of machine learning, it has been observed that heavy tail properties of Stochastic Gradient Descent (SGD) can be studied in the probabilistic framework of stochastic recursions. In particular, G\"{u}rb\"{u}zbalaban et al. (arXiv:2006.04740) considered a setup corresponding to linear regression for which iterations of SGD can be modelled by a multivariate affine stochastic recursion $X_k=A_k X_{k-1}+B_k$, for independent and identically distributed pairs $(A_k, B_k)$, where $A_k$ is a random symmetric matrix and $B_k$ is a random vector. In this work, we will answer several open questions of the quoted paper and extend their results by applying the theory of irreducible-proximal (i-p) matrices.
Lattices are architected metamaterials whose properties strongly depend on their geometrical design. The analogy between lattices and graphs enables the use of graph neural networks (GNNs) as a faster surrogate model compared to traditional methods such as finite element modelling. In this work, we generate a big dataset of structure-property relationships for strut-based lattices. The dataset is made available to the community which can fuel the development of methods anchored in physical principles for the fitting of fourth-order tensors. In addition, we present a higher-order GNN model trained on this dataset. The key features of the model are (i) SE(3) equivariance, and (ii) consistency with the thermodynamic law of conservation of energy. We compare the model to non-equivariant models based on a number of error metrics and demonstrate its benefits in terms of predictive performance and reduced training requirements. Finally, we demonstrate an example application of the model to an architected material design task. The methods which we developed are applicable to fourth-order tensors beyond elasticity such as piezo-optical tensor etc.
The back-end module of Distributed Collaborative Simultaneous Localization and Mapping (DCSLAM) requires solving a nonlinear Pose Graph Optimization (PGO) under a distributed setting, also known as SE(d)-synchronization. Most existing distributed graph optimization algorithms employ a simple sequential partitioning scheme, which may result in unbalanced subgraph dimensions due to the different geographic locations of each robot, and hence imposes extra communication load. Moreover, the performance of current Riemannian optimization algorithms can be further accelerated. In this letter, we propose a novel distributed pose graph optimization algorithm combining multi-level partitioning with an accelerated Riemannian optimization method. Firstly, we employ the multi-level graph partitioning algorithm to preprocess the naive pose graph to formulate a balanced optimization problem. In addition, inspired by the accelerated coordinate descent method, we devise an Improved Riemannian Block Coordinate Descent (IRBCD) algorithm and the critical point obtained is globally optimal. Finally, we evaluate the effects of four common graph partitioning approaches on the correlation of the inter-subgraphs, and discover that the Highest scheme has the best partitioning performance. Also, we implement simulations to quantitatively demonstrate that our proposed algorithm outperforms the state-of-the-art distributed pose graph optimization protocols.
Ever since the seminal work of R. A. Fisher and F. Yates, factorial designs have been an important experimental tool to simultaneously estimate the effects of multiple treatment factors. In factorial designs, the number of treatment combinations grows exponentially with the number of treatment factors, which motivates the forward selection strategy based on the sparsity, hierarchy, and heredity principles for factorial effects. Although this strategy is intuitive and has been widely used in practice, its rigorous statistical theory has not been formally established. To fill this gap, we establish design-based theory for forward factor selection in factorial designs based on the potential outcome framework. We not only prove a consistency property for the factor selection procedure but also discuss statistical inference after factor selection. In particular, with selection consistency, we quantify the advantages of forward selection based on asymptotic efficiency gain in estimating factorial effects. With inconsistent selection in higher-order interactions, we propose two strategies and investigate their impact on subsequent inference. Our formulation differs from the existing literature on variable selection and post-selection inference because our theory is based solely on the physical randomization of the factorial design and does not rely on a correctly specified outcome model.
*《Connections between Support Vector Machines, Wasserstein distance and gradient-penalty GANs》A Jolicoeur-Martineau, I Mitliagkas [Mila] (2019)