亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The notion of confidence distributions is applied to inference about the parameter in a simple autoregressive model, allowing the parameter to take the value one. This makes it possible to compare to asymptotic approximations in both the stationary and the non stationary cases at the same time. The main point, however, is to compare to a Bayesian analysis of the same problem. A non informative prior for a parameter, in the sense of Jeffreys, is given as the ratio of the confidence density and the likelihood. In this way, the similarity between the confidence and non-informative Bayesian frameworks is exploited. It is shown that, in the stationary case, asymptotically the so induced prior is flat. However, if a unit parameter is allowed, the induced prior has to have a spike at one of some size. Simulation studies and two empirical examples illustrate the ideas.

相關內容

Diffusion models have gained significant attention in the realm of image generation due to their exceptional performance. Their success has been recently expanded to text generation via generating all tokens within a sequence concurrently. However, natural language exhibits a far more pronounced sequential dependency in comparison to images, and the majority of existing language models are trained utilizing a left-to-right auto-regressive approach. To account for the inherent sequential characteristic of natural language, we introduce Auto-Regressive Diffusion (AR-Diffusion). AR-Diffusion ensures that the generation of tokens on the right depends on the generated ones on the left, a mechanism achieved through employing a dynamic number of denoising steps that vary based on token position. This results in tokens on the left undergoing fewer denoising steps than those on the right, thereby enabling them to generate earlier and subsequently influence the generation of tokens on the right. In a series of experiments on various text generation tasks including text summarization, machine translation, and common sense generation, AR-Diffusion clearly demonstrated the superiority over existing diffusion language models and that it can be $100\times\sim600\times$ faster when achieving comparable results. Our code will be publicly released.

Hybrid ensemble, an essential branch of ensembles, has flourished in the regression field, with studies confirming diversity's importance. However, previous ensembles consider diversity in the sub-model training stage, with limited improvement compared to single models. In contrast, this study automatically selects and weights sub-models from a heterogeneous model pool. It solves an optimization problem using an interior-point filtering linear-search algorithm. The objective function innovatively incorporates negative correlation learning as a penalty term, with which a diverse model subset can be selected. The best sub-models from each model class are selected to build the NCL ensemble, which performance is better than the simple average and other state-of-the-art weighting methods. It is also possible to improve the NCL ensemble with a regularization term in the objective function. In practice, it is difficult to conclude the optimal sub-model for a dataset prior due to the model uncertainty. Regardless, our method would achieve comparable accuracy as the potential optimal sub-models. In conclusion, the value of this study lies in its ease of use and effectiveness, allowing the hybrid ensemble to embrace diversity and accuracy.

For a finite group $G$, the size of a minimum generating set of $G$ is denoted by $d(G)$. Given a finite group $G$ and an integer $k$, deciding if $d(G)\leq k$ is known as the minimum generating set (MIN-GEN) problem. A group $G$ of order $n$ has generating set of size $\lceil \log_p n \rceil$ where $p$ is the smallest prime dividing $n=|G|$. This fact is used to design an $n^{\log_p n+O(1)}$-time algorithm for the group isomorphism problem of groups specified by their Cayley tables (attributed to Tarjan by Miller, 1978). The same fact can be used to give an $n^{\log_p n+O(1)}$-time algorithm for the MIN-GEN problem. We show that the MIN-GEN problem can be solved in time $n^{(1/4)\log_p n+O(1)}$ for general groups given by their Cayley tables. This runtime incidentally matches with the runtime of the best known algorithm for the group isomorphism problem. We show that if a group $G$, given by its Cayley table, is the product of simple groups then a minimum generating set of $G$ can be computed in time polynomial in $|G|$. Given groups $G_i$ along with $d(G_i)$ for $i\in [r]$ the problem of computing $d(\Pi_{i\in[r]} G_i)$ is nontrivial. As a consequence of our result for products of simple groups we show that this problem also can be solved in polynomial time for Cayley table representation. For the MIN-GEN problem for permutation groups, to the best of our knowledge, no significantly better algorithm than the brute force algorithm is known. For an input group $G\leq S_n$, the brute force algorithm runs in time $|G|^{O(n)}$ which can be $2^{\Omega(n^2)}$. We show that if $G\leq S_n$ is a primitive permutation group then the MIN-GEN problem can be solved in time quasi-polynomial in $n$. We also design a $\mathrm{DTIME}(2^n)$ algorithm for computing a minimum generating set of permutation groups all of whose non-abelian chief factors have bounded orders.

A Two-Stage approach enables researchers to make optimal non-linear predictions via Generalized Ridge Regression using models that contain two or more x-predictor variables and make only realistic minimal assumptions. The optimal regression coefficient estimates that result are either unbiased or most likely to have mininal MSE risk under Normal distribution theory. All necessary calculations and graphical displays are generated using current versions of CRAN R-packages. A numerical example using the "corrected" USArrests data.frame introduces and illustrates this new robust statistical methodology. While applying this strategy to regression models with several hundred observations is straight-forward, the computations required in such cases can be extensive.

Integrating evolutionary partial differential equations (PDEs) is an essential ingredient for studying the dynamics of the solutions. Indeed, simulations are at the core of scientific computing, but their mathematical reliability is often difficult to quantify, especially when one is interested in the output of a given simulation, rather than in the asymptotic regime where the discretization parameter tends to zero. In this paper we present a computer-assisted proof methodology to perform rigorous time integration for scalar semilinear parabolic PDEs with periodic boundary conditions. We formulate an equivalent zero-finding problem based on a variations of constants formula in Fourier space. Using Chebyshev interpolation and domain decomposition, we then finish the proof with a Newton--Kantorovich type argument. The final output of this procedure is a proof of existence of an orbit, together with guaranteed error bounds between this orbit and a numerically computed approximation. We illustrate the versatility of the approach with results for the Fisher equation, the Swift--Hohenberg equation, the Ohta--Kawasaki equation and the Kuramoto--Sivashinsky equation. We expect that this rigorous integrator can form the basis for studying boundary value problems for connecting orbits in partial differential equations.

Several kernel based testing procedures are proposed to solve the problem of model selection in the presence of parameter estimation in a family of candidate models. Extending the two sample test of Gretton et al. (2006), we first provide a way of testing whether some data is drawn from a given parametric model (model specification). Second, we provide a test statistic to decide whether two parametric models are equally valid to describe some data (model comparison), in the spirit of Vuong (1989). All our tests are asymptotically standard normal under the null, even when the true underlying distribution belongs to the competing parametric families.Some simulations illustrate the performance of our tests in terms of power and level.

Deep learning models, including modern systems like large language models, are well known to offer unreliable estimates of the uncertainty of their decisions. In order to improve the quality of the confidence levels, also known as calibration, of a model, common approaches entail the addition of either data-dependent or data-independent regularization terms to the training loss. Data-dependent regularizers have been recently introduced in the context of conventional frequentist learning to penalize deviations between confidence and accuracy. In contrast, data-independent regularizers are at the core of Bayesian learning, enforcing adherence of the variational distribution in the model parameter space to a prior density. The former approach is unable to quantify epistemic uncertainty, while the latter is severely affected by model misspecification. In light of the limitations of both methods, this paper proposes an integrated framework, referred to as calibration-aware Bayesian neural networks (CA-BNNs), that applies both regularizers while optimizing over a variational distribution as in Bayesian learning. Numerical results validate the advantages of the proposed approach in terms of expected calibration error (ECE) and reliability diagrams.

The paper considers the distribution of a general linear combination of central and non-central chi-square random variables by exploring the branch cut regions that appear in the standard Laplace inversion process. Due to the original interest from the directional statistics, the focus of this paper is on the density function of such distributions and not on their cumulative distribution function. In fact, our results confirm that the latter is a special case of the former. Our approach provides new insight by generating alternative characterizations of the probability density function in terms of a finite number of feasible univariate integrals. In particular, the central cases seem to allow an interesting representation in terms of the branch cuts, while general degrees of freedom and non-centrality can be easily adopted using recursive differentiation. Numerical results confirm that the proposed approach works well while more transparency and therefore easier control in the accuracy is ensured.

Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen before and cannot make a safe decision. This problem first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems are closely related to OOD detection in terms of motivation and methodology. These include anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). Despite having different definitions and problem settings, these problems often confuse readers and practitioners, and as a result, some existing studies misuse terms. In this survey, we first present a generic framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e., AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. Then, we conduct a thorough review of each of the five areas by summarizing their recent technical developments. We conclude this survey with open challenges and potential research directions.

Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.

北京阿比特科技有限公司