亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Estimating confidence scores for recognition results is a classic task in ASR field and of vital importance for kinds of downstream tasks and training strategies. Previous end-to-end~(E2E) based confidence estimation models (CEM) predict score sequences of equal length with input transcriptions, leading to unreliable estimation when deletion and insertion errors occur. In this paper we proposed CIF-Aligned confidence estimation model (CA-CEM) to achieve accurate and reliable confidence estimation based on novel non-autoregressive E2E ASR model - Paraformer. CA-CEM utilizes the modeling character of continuous integrate-and-fire (CIF) mechanism to generate token-synchronous acoustic embedding, which solves the estimation failure issue above. We measure the quality of estimation with AUC and RMSE in token level and ECE-U - a proposed metrics in utterance level. CA-CEM gains 24% and 19% relative reduction on ECE-U and also better AUC and RMSE on two test sets. Furthermore, we conduct analysis to explore the potential of CEM for different ASR related usage.

相關內容

The focal point of egocentric video understanding is modelling hand-object interactions. Standard models, e.g. CNNs or Vision Transformers, which receive RGB frames as input perform well. However, their performance improves further by employing additional input modalities that provide complementary cues, such as object detections, optical flow, audio, etc. The added complexity of the modality-specific modules, on the other hand, makes these models impractical for deployment. The goal of this work is to retain the performance of such a multimodal approach, while using only the RGB frames as input at inference time. We demonstrate that for egocentric action recognition on the Epic-Kitchens and the Something-Something datasets, students which are taught by multimodal teachers tend to be more accurate and better calibrated than architecturally equivalent models trained on ground truth labels in a unimodal or multimodal fashion. We further adopt a principled multimodal knowledge distillation framework, allowing us to deal with issues which occur when applying multimodal knowledge distillation in a naive manner. Lastly, we demonstrate the achieved reduction in computational complexity, and show that our approach maintains higher performance with the reduction of the number of input views.

The representation learning of speech, without textual resources, is an area of significant interest for many low resource speech applications. In this paper, we describe an approach to self-supervised representation learning from raw audio using a hidden unit clustering (HUC) framework. The input to the model consists of audio samples that are windowed and processed with 1-D convolutional layers. The learned "time-frequency" representations from the convolutional neural network (CNN) module are further processed with long short term memory (LSTM) layers which generate a contextual vector representation for every windowed segment. The HUC framework, allowing the categorization of the representations into a small number of phoneme-like units, is used to train the model for learning semantically rich speech representations. The targets consist of phoneme-like pseudo labels for each audio segment and these are generated with an iterative k-means algorithm. We explore techniques that improve the speaker invariance of the learned representations and illustrate the effectiveness of the proposed approach on two settings, i) completely unsupervised speech applications on the sub-tasks described as part of the ZeroSpeech 2021 challenge and ii) semi-supervised automatic speech recognition (ASR) applications on the TIMIT dataset and on the GramVaani challenge Hindi dataset. In these experiments, we achieve state-of-art results for various ZeroSpeech tasks. Further, on the ASR experiments, the HUC representations are shown to improve significantly over other established benchmarks based on Wav2vec, HuBERT and Best-RQ.

This paper proposes a transformer-based learned image compression system. It is capable of achieving variable-rate compression with a single model while supporting the region-of-interest (ROI) functionality. Inspired by prompt tuning, we introduce prompt generation networks to condition the transformer-based autoencoder of compression. Our prompt generation networks generate content-adaptive tokens according to the input image, an ROI mask, and a rate parameter. The separation of the ROI mask and the rate parameter allows an intuitive way to achieve variable-rate and ROI coding simultaneously. Extensive experiments validate the effectiveness of our proposed method and confirm its superiority over the other competing methods.

Audio-Visual Event Localization (AVEL) is the task of temporally localizing and classifying \emph{audio-visual events}, i.e., events simultaneously visible and audible in a video. In this paper, we solve AVEL in a weakly-supervised setting, where only video-level event labels (their presence/absence, but not their locations in time) are available as supervision for training. Our idea is to use a base model to estimate labels on the training data at a finer temporal resolution than at the video level and re-train the model with these labels. I.e., we determine the subset of labels for each \emph{slice} of frames in a training video by (i) replacing the frames outside the slice with those from a second video having no overlap in video-level labels, and (ii) feeding this synthetic video into the base model to extract labels for just the slice in question. To handle the out-of-distribution nature of our synthetic videos, we propose an auxiliary objective for the base model that induces more reliable predictions of the localized event labels as desired. Our three-stage pipeline outperforms several existing AVEL methods with no architectural changes and improves performance on a related weakly-supervised task as well.

The performance of a quantum information processing protocol is ultimately judged by distinguishability measures that quantify how distinguishable the actual result of the protocol is from the ideal case. The most prominent distinguishability measures are those based on the fidelity and trace distance, due to their physical interpretations. In this paper, we propose and review several algorithms for estimating distinguishability measures based on trace distance and fidelity. The algorithms can be used for distinguishing quantum states, channels, and strategies (the last also known in the literature as "quantum combs"). The fidelity-based algorithms offer novel physical interpretations of these distinguishability measures in terms of the maximum probability with which a single prover (or competing provers) can convince a verifier to accept the outcome of an associated computation. We simulate many of these algorithms by using a variational approach with parameterized quantum circuits. We find that the simulations converge well in both the noiseless and noisy scenarios, for all examples considered. Furthermore, the noisy simulations exhibit a parameter noise resilience. Finally, we establish a strong relationship between various quantum computational complexity classes and distance estimation problems.

Standard recognition approaches are unable to deal with novel categories at test time. Their overconfidence on the known classes makes the predictions unreliable for safety-critical applications such as healthcare or autonomous driving. Out-Of-Distribution (OOD) detection methods provide a solution by identifying semantic novelty. Most of these methods leverage a learning stage on the known data, which means training (or fine-tuning) a model to capture the concept of normality. This process is clearly sensitive to the amount of available samples and might be computationally expensive for on-board systems. A viable alternative is that of evaluating similarities in the embedding space produced by large pre-trained models without any further learning effort. We focus exactly on such a fine-tuning-free OOD detection setting. This works presents an in-depth analysis of the recently introduced relational reasoning pre-training and investigates the properties of the learned embedding, highlighting the existence of a correlation between the inter-class feature distance and the OOD detection accuracy. As the class separation depends on the chosen pre-training objective, we propose an alternative loss function to control the inter-class margin, and we show its advantage with thorough experiments.

Recently, the performance of neural image compression (NIC) has steadily improved thanks to the last line of study, reaching or outperforming state-of-the-art conventional codecs. Despite significant progress, current NIC methods still rely on ConvNet-based entropy coding, limited in modeling long-range dependencies due to their local connectivity and the increasing number of architectural biases and priors, resulting in complex underperforming models with high decoding latency. Motivated by the efficiency investigation of the Tranformer-based transform coding framework, namely SwinT-ChARM, we propose to enhance the latter, as first, with a more straightforward yet effective Tranformer-based channel-wise auto-regressive prior model, resulting in an absolute image compression transformer (ICT). Through the proposed ICT, we can capture both global and local contexts from the latent representations and better parameterize the distribution of the quantized latents. Further, we leverage a learnable scaling module with a sandwich ConvNeXt-based pre-/post-processor to accurately extract more compact latent codes while reconstructing higher-quality images. Extensive experimental results on benchmark datasets showed that the proposed framework significantly improves the trade-off between coding efficiency and decoder complexity over the versatile video coding (VVC) reference encoder (VTM-18.0) and the neural codec SwinT-ChARM. Moreover, we provide model scaling studies to verify the computational efficiency of our approach and conduct several objective and subjective analyses to bring to the fore the performance gap between the adaptive image compression transformer (AICT) and the neural codec SwinT-ChARM.

In many applications, when building linear regression models, it is important to account for the presence of outliers, i.e., corrupted input data points. Such problems can be formulated as mixed-integer optimization problems involving cubic terms, each given by the product of a binary variable and a quadratic term of the continuous variables. Existing approaches in the literature, typically relying on the linearization of the cubic terms using big-M constraints, suffer from weak relaxation and poor performance in practice. In this work we derive stronger second-order conic relaxations that do not involve big-M constraints. Our computational experiments indicate that the proposed formulations are several orders-of-magnitude faster than existing big-M formulations in the literature for this problem.

Deep learning (DL) models for spatio-temporal traffic flow forecasting employ convolutional or graph-convolutional filters along with recurrent neural networks to capture spatial and temporal dependencies in traffic data. These models, such as CNN-LSTM, utilize traffic flows from neighboring detector stations to predict flows at a specific location of interest. However, these models are limited in their ability to capture the broader dynamics of the traffic system, as they primarily learn features specific to the detector configuration and traffic characteristics at the target location. Hence, the transferability of these models to different locations becomes challenging, particularly when data is unavailable at the new location for model training. To address this limitation, we propose a traffic flow physics-based feature transformation for spatio-temporal DL models. This transformation incorporates Newell's uncongested and congested-state estimators of traffic flows at the target locations, enabling the models to learn broader dynamics of the system. Our methodology is empirically validated using traffic data from two different locations. The results demonstrate that the proposed feature transformation improves the models' performance in predicting traffic flows over different prediction horizons, as indicated by better goodness-of-fit statistics. An important advantage of our framework is its ability to be transferred to new locations where data is unavailable. This is achieved by appropriately accounting for spatial dependencies based on station distances and various traffic parameters. In contrast, regular DL models are not easily transferable as their inputs remain fixed. It should be noted that due to data limitations, we were unable to perform spatial sensitivity analysis, which calls for further research using simulated data.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

北京阿比特科技有限公司