亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Hydropower plants play a pivotal role in advancing clean and sustainable energy production, contributing significantly to the global transition towards renewable energy sources. However, hydropower plants are currently perceived both positively as sources of renewable energy and negatively as disruptors of ecosystems. In this work, we highlight the overlooked potential of using hydropower plant as protectors of ecosystems by using adaptive ecological discharges. To advocate for this perspective, we propose using a neural network to predict the minimum ecological discharge value at each desired time. Additionally, we present a novel framework that seamlessly integrates it into hydropower management software, taking advantage of the well-established approach of using traditional constrained optimisation algorithms. This novel approach not only protects the ecosystems from climate change but also contributes to potentially increase the electricity production.

相關內容

In the contemporary landscape of technological advancements, the automation of manual processes is crucial, compelling the demand for huge datasets to effectively train and test machines. This research paper is dedicated to the exploration and implementation of an automated approach to generate test cases specifically using Large Language Models. The methodology integrates the use of Open AI to enhance the efficiency and effectiveness of test case generation for training and evaluating Large Language Models. This formalized approach with LLMs simplifies the testing process, making it more efficient and comprehensive. Leveraging natural language understanding, LLMs can intelligently formulate test cases that cover a broad range of REST API properties, ensuring comprehensive testing. The model that is developed during the research is trained using manually collected postman test cases or instances for various Rest APIs. LLMs enhance the creation of Postman test cases by automating the generation of varied and intricate test scenarios. Postman test cases offer streamlined automation, collaboration, and dynamic data handling, providing a user-friendly and efficient approach to API testing compared to traditional test cases. Thus, the model developed not only conforms to current technological standards but also holds the promise of evolving into an idea of substantial importance in future technological advancements.

Developing and testing novel control and motion planning algorithms for aerial vehicles can be a challenging task, with the robotics community relying more than ever on 3D simulation technologies to evaluate the performance of new algorithms in a variety of conditions and environments. In this work, we introduce the Pegasus Simulator, a modular framework implemented as an NVIDIA Isaac Sim extension that enables real-time simulation of multiple multirotor vehicles in photo-realistic environments, while providing out-of-the-box integration with the widely adopted PX4-Autopilot and ROS2 through its modular implementation and intuitive graphical user interface. To demonstrate some of its capabilities, a nonlinear controller was implemented and simulation results for two drones performing aggressive flight maneuvers are presented. Code and documentation for this framework are also provided as supplementary material.

For autonomous vehicles to proactively plan safe trajectories and make informed decisions, they must be able to predict the future occupancy states of the local environment. However, common issues with occupancy prediction include predictions where moving objects vanish or become blurred, particularly at longer time horizons. We propose an environment prediction framework that incorporates environment semantics for future occupancy prediction. Our method first semantically segments the environment and uses this information along with the occupancy information to predict the spatiotemporal evolution of the environment. We validate our approach on the real-world Waymo Open Dataset. Compared to baseline methods, our model has higher prediction accuracy and is capable of maintaining moving object appearances in the predictions for longer prediction time horizons.

Adaptive informative path planning (AIPP) is important to many robotics applications, enabling mobile robots to efficiently collect useful data about initially unknown environments. In addition, learning-based methods are increasingly used in robotics to enhance adaptability, versatility, and robustness across diverse and complex tasks. Our survey explores research on applying robotic learning to AIPP, bridging the gap between these two research fields. We begin by providing a unified mathematical framework for general AIPP problems. Next, we establish two complementary taxonomies of current work from the perspectives of (i) learning algorithms and (ii) robotic applications. We explore synergies, recent trends, and highlight the benefits of learning-based methods in AIPP frameworks. Finally, we discuss key challenges and promising future directions to enable more generally applicable and robust robotic data-gathering systems through learning. We provide a comprehensive catalogue of papers reviewed in our survey, including publicly available repositories, to facilitate future studies in the field.

Remaining Useful Life (RUL) predictions play vital role for asset planning and maintenance leading to many benefits to industries such as reduced downtime, low maintenance costs, etc. Although various efforts have been devoted to study this topic, most existing works are restricted for i.i.d conditions assuming the same condition of the training phase and the deployment phase. This paper proposes a solution to this problem where a mix-up domain adaptation (MDAN) is put forward. MDAN encompasses a three-staged mechanism where the mix-up strategy is not only performed to regularize the source and target domains but also applied to establish an intermediate mix-up domain where the source and target domains are aligned. The self-supervised learning strategy is implemented to prevent the supervision collapse problem. Rigorous evaluations have been performed where MDAN is compared to recently published works for dynamic RUL predictions. MDAN outperforms its counterparts with substantial margins in 12 out of 12 cases. In addition, MDAN is evaluated with the bearing machine dataset where it beats prior art with significant gaps in 8 of 12 cases. Source codes of MDAN are made publicly available in \url{//github.com/furqon3009/MDAN}.

Diffusion Probabilistic Models stand as a critical tool in generative modelling, enabling the generation of complex data distributions. This family of generative models yields record-breaking performance in tasks such as image synthesis, video generation, and molecule design. Despite their capabilities, their efficiency, especially in the reverse process, remains a challenge due to slow convergence rates and high computational costs. In this paper, we introduce an approach that leverages continuous dynamical systems to design a novel denoising network for diffusion models that is more parameter-efficient, exhibits faster convergence, and demonstrates increased noise robustness. Experimenting with Denoising Diffusion Probabilistic Models (DDPMs), our framework operates with approximately a quarter of the parameters, and $\sim$ 30\% of the Floating Point Operations (FLOPs) compared to standard U-Nets in DDPMs. Furthermore, our model is notably faster in inference than the baseline when measured in fair and equal conditions. We also provide a mathematical intuition as to why our proposed reverse process is faster as well as a mathematical discussion of the empirical tradeoffs in the denoising downstream task. Finally, we argue that our method is compatible with existing performance enhancement techniques, enabling further improvements in efficiency, quality, and speed.

Demand forecasts are the crucial basis for numerous business decisions, ranging from inventory management to strategic facility planning. While machine learning (ML) approaches offer accuracy gains, their interpretability and acceptance are notoriously lacking. Addressing this dilemma, we introduce Hierarchical Neural Additive Models for time series (HNAM). HNAM expands upon Neural Additive Models (NAM) by introducing a time-series specific additive model with a level and interacting covariate components. Covariate interactions are only allowed according to a user-specified interaction hierarchy. For example, weekday effects may be estimated independently of other covariates, whereas a holiday effect may depend on the weekday and an additional promotion may depend on both former covariates that are lower in the interaction hierarchy. Thereby, HNAM yields an intuitive forecasting interface in which analysts can observe the contribution for each known covariate. We evaluate the proposed approach and benchmark its performance against other state-of-the-art machine learning and statistical models extensively on real-world retail data. The results reveal that HNAM offers competitive prediction performance whilst providing plausible explanations.

Industrial production processes, especially in the pharmaceutical industry, are complex systems that require continuous monitoring to ensure efficiency, product quality, and safety. This paper presents a hybrid unsupervised learning strategy (HULS) for monitoring complex industrial processes. Addressing the limitations of traditional Self-Organizing Maps (SOMs), especially in scenarios with unbalanced data sets and highly correlated process variables, HULS combines existing unsupervised learning techniques to address these challenges. To evaluate the performance of the HULS concept, comparative experiments are performed based on a laboratory batch

Noisy label learning aims to train deep neural networks using a large amount of samples with noisy labels, whose main challenge comes from how to deal with the inaccurate supervision caused by wrong labels. Existing works either take the label correction or sample selection paradigm to involve more samples with accurate labels into the training process. In this paper, we propose a simple yet effective sample selection algorithm, termed as Pairwise Similarity Distribution Clustering~(PSDC), to divide the training samples into one clean set and another noisy set, which can power any of the off-the-shelf semi-supervised learning regimes to further train networks for different downstream tasks. Specifically, we take the pairwise similarity between sample pairs to represent the sample structure, and the Gaussian Mixture Model~(GMM) to model the similarity distribution between sample pairs belonging to the same noisy cluster, therefore each sample can be confidently divided into the clean set or noisy set. Even under severe label noise rate, the resulting data partition mechanism has been proved to be more robust in judging the label confidence in both theory and practice. Experimental results on various benchmark datasets, such as CIFAR-10, CIFAR-100 and Clothing1M, demonstrate significant improvements over state-of-the-art methods.

The safe control of multi-robot swarms is a challenging and active field of research, where common goals include maintaining group cohesion while simultaneously avoiding obstacles and inter-agent collision. Building off our previously developed theory for distributed collaborative safety-critical control for networked dynamic systems, we propose a distributed algorithm for the formation control of robot swarms given individual agent dynamics, induced formation dynamics, and local neighborhood position and velocity information within a defined sensing radius for each agent. Individual safety guarantees for each agent are obtained using rounds of communication between neighbors to restrict unsafe control actions among cooperating agents through safety conditions derived from high-order control barrier functions. We provide conditions under which a swarm is guaranteed to achieve collective safety with respect to multiple obstacles using a modified collaborative safety algorithm. We demonstrate the performance of our distributed algorithm via simulation in a simplified physics-based environment.

北京阿比特科技有限公司