Cashless payment systems offer many benefits over cash, but also have some drawbacks. Fake terminals, skimming, wireless connectivity, and relay attacks are persistent problems. Attempts to overcome one problem often lead to another - for example, some systems use QR codes to avoid skimming and connexion issues, but QR codes can be stolen at distance and relayed. In this paper, we propose a novel mobile payment scheme based on biometric identification that provides mutual authentication to protect the user from rogue terminals. Our scheme imposes only minimal requirements on terminal hardware, does not depend on wireless connectivity between the user and the verifier during the authentication phase, and does not require the user to trust the terminal until it has authenticated itself to the user. We show that our scheme is resistant against phishing, replay, relay, and presentation attacks.
Residual networks, as discrete approximations of Ordinary Differential Equations (ODEs), have inspired significant advancements in neural network design, including multistep methods, high-order methods, and multi-particle dynamical systems. The precision of the solution to ODEs significantly affects parameter optimization, thereby impacting model performance. In this work, we present a series of advanced explorations of Transformer architecture design to minimize the error compared to the true ``solution.'' First, we introduce a predictor-corrector learning framework to minimize truncation errors, which consists of a high-order predictor and a multistep corrector. Second, we propose an exponential moving average-based coefficient learning method to strengthen our higher-order predictor. Extensive experiments on large-scale machine translation, abstractive summarization, language modeling, and natural language understanding benchmarks demonstrate the superiority of our approach. On the WMT'14 English-German and English-French tasks, our model achieved BLEU scores of 30.95 and 44.27, respectively. Furthermore, on the OPUS multilingual machine translation task, our model surpasses a robust 3.8B DeepNet by an average of 2.9 SacreBLEU, using only 1/3 parameters. Notably, it also beats LLama models by 5.7 accuracy points on the LM Harness Evaluation.
We present a method to detect departures from business-justified workflows among support agents. Our goal is to assist auditors in identifying agent actions that cannot be explained by the activity within their surrounding context, where normal activity patterns are established from historical data. We apply our method to help audit millions of actions of over three thousand support agents. We collect logs from the tools used by support agents and construct a bipartite graph of Actions and Entities representing all the actions of the agents, as well as background information about entities. From this graph, we sample subgraphs rooted on security-significant actions taken by the agents. Each subgraph captures the relevant context of the root action in terms of other actions, entities and their relationships. We then prioritize the rooted-subgraphs for auditor review using feed-forward and graph neural networks, as well as nearest neighbors techniques. To alleviate the issue of scarce labeling data, we use contrastive learning and domain-specific data augmentations. Expert auditors label the top ranked subgraphs as ``worth auditing" or ``not worth auditing" based on the company's business policies. This system finds subgraphs that are worth auditing with high enough precision to be used in production.
Integrated micro power generators are crucial components for micro robotic platforms to demonstrate untethered operation and to achieve autonomy. Current micro robotic electrostatic actuators typically require hundreds to thousands of voltages to output sufficient work. Pyroelectricity is one such source of high voltages that can be scaled to small form factors. This paper demonstrates a distributed pyroelectric high voltage generation mechanism to power kV actuators using alternating exposure of crystals to hot and cold water (300C to 900C water temperature). Using this fluidic temperature control, a pyroelectrically generated voltage of 2470 V was delivered to a 2 pF storage capacitor yielding a 6.10 {\mu}J stored energy. A maximum energy of 17.46 {\mu}J was delivered to a 47 pF capacitor at 861 V. The recirculating water can be used to heat a distributed array of converters to generate electricity in distant robotic actuator sections. The development of this distributed system would enable untethered micro-robot to be operated with a flexible body and free of battery recharging, which advances its applications in the real world.
Human impressions of robot performance are often measured through surveys. As a more scalable and cost-effective alternative, we investigate the possibility of predicting people's impressions of robot behavior using non-verbal behavioral cues and machine learning techniques. To this end, we first contribute the SEAN TOGETHER Dataset consisting of observations of an interaction between a person and a mobile robot in a VR simulation, together with impressions of robot performance provided by users on a 5-point scale. Second, we contribute analyses of how well humans and supervised learning techniques can predict perceived robot performance based on different observation types (like facial expression features, and features that describe the navigation behavior of the robot and pedestrians). Our results suggest that facial expressions alone provide useful information about human impressions of robot performance; but in the navigation scenarios that we considered, reasoning about spatial features in context is critical for the prediction task. Also, supervised learning techniques showed promise because they outperformed humans' predictions of robot performance in most cases. Further, when predicting robot performance as a binary classification task on unseen users' data, the F1 Score of machine learning models more than doubled in comparison to predicting performance on a 5-point scale. This suggested that the models can have good generalization capabilities, although they are better at telling the directionality of robot performance than predicting exact performance ratings. Based on our findings in simulation, we conducted a real-world demonstration in which a mobile robot uses a machine learning model to predict how a human that follows it perceives it. Finally, we discuss the implications of our results for implementing such supervised learning models in real-world navigation scenarios.
To control the behavior of language models, steering methods attempt to ensure that outputs of the model satisfy specific pre-defined properties. Adding steering vectors to the model is a promising method of model control that is easier than finetuning, and may be more robust than prompting. However, it can be difficult to anticipate the effects of steering vectors produced by almost all existing methods, such as CAA (Panickssery et al., 2024) or the direct use of SAE latents (Templeton et al., 2024). In our work, we address this issue by using SAEs to measure the effects of steering vectors, giving us a method that can be used to understand the causal effect of any steering vector intervention. We use this method for measuring causal effects to develop an improved steering method, SAE-Targeted Steering (SAE-TS), which finds steering vectors to target specific SAE features while minimizing unintended side effects. We show that overall, SAE-TS balances steering effects with coherence better than CAA and SAE feature steering, when evaluated on a range of tasks.
Many applications of cyber-physical systems require real-time communication: manufacturing, automotive, etc. Recent Ethernet standards for Time Sensitive Networking (TSN) offer time-triggered scheduling in order to guarantee low latency and jitter bounds. This requires precise frame transmission planning, which becomes especially hard when dealing with many streams, large networks, and dynamically changing communications. A very promising approach uses conflict graphs, modeling conflicting transmission configurations. Since the creation of conflict graphs is the bottleneck in these approaches, we provide an improvement to the conflict graph creation. We present a randomized selection process that reduces the overall size of the graph in half and three heuristics to improve the scheduling success. In our evaluations we show substantial improvements in the graph creation speed and the scheduling success compared to existing work, updating existing schedules in fractions of a second. Additionally, offline planning of 9000 streams was performed successfully within minutes.
While sequential recommendation achieves significant progress on capturing user-item transition patterns, transferring such large-scale recommender systems remains challenging due to the disjoint user and item groups across domains. In this paper, we propose a vector quantized meta learning for transferable sequential recommenders (MetaRec). Without requiring additional modalities or shared information across domains, our approach leverages user-item interactions from multiple source domains to improve the target domain performance. To solve the input heterogeneity issue, we adopt vector quantization that maps item embeddings from heterogeneous input spaces to a shared feature space. Moreover, our meta transfer paradigm exploits limited target data to guide the transfer of source domain knowledge to the target domain (i.e., learn to transfer). In addition, MetaRec adaptively transfers from multiple source tasks by rescaling meta gradients based on the source-target domain similarity, enabling selective learning to improve recommendation performance. To validate the effectiveness of our approach, we perform extensive experiments on benchmark datasets, where MetaRec consistently outperforms baseline methods by a considerable margin.
A key question in many network studies is whether the observed correlations between units are primarily due to contagion or latent confounding. Here, we study this question using a segregated graph (Shpitser, 2015) representation of these mechanisms, and examine how uncertainty about the true underlying mechanism impacts downstream computation of network causal effects, particularly under full interference -- settings where we only have a single realization of a network and each unit may depend on any other unit in the network. Under certain assumptions about asymptotic growth of the network, we derive likelihood ratio tests that can be used to identify whether different sets of variables -- confounders, treatments, and outcomes -- across units exhibit dependence due to contagion or latent confounding. We then propose network causal effect estimation strategies that provide unbiased and consistent estimates if the dependence mechanisms are either known or correctly inferred using our proposed tests. Together, the proposed methods allow network effect estimation in a wider range of full interference scenarios that have not been considered in prior work. We evaluate the effectiveness of our methods with synthetic data and the validity of our assumptions using real-world networks.
The real-world data tends to be heavily imbalanced and severely skew the data-driven deep neural networks, which makes Long-Tailed Recognition (LTR) a massive challenging task. Existing LTR methods seldom train Vision Transformers (ViTs) with Long-Tailed (LT) data, while the off-the-shelf pretrain weight of ViTs always leads to unfair comparisons. In this paper, we systematically investigate the ViTs' performance in LTR and propose LiVT to train ViTs from scratch only with LT data. With the observation that ViTs suffer more severe LTR problems, we conduct Masked Generative Pretraining (MGP) to learn generalized features. With ample and solid evidence, we show that MGP is more robust than supervised manners. In addition, Binary Cross Entropy (BCE) loss, which shows conspicuous performance with ViTs, encounters predicaments in LTR. We further propose the balanced BCE to ameliorate it with strong theoretical groundings. Specially, we derive the unbiased extension of Sigmoid and compensate extra logit margins to deploy it. Our Bal-BCE contributes to the quick convergence of ViTs in just a few epochs. Extensive experiments demonstrate that with MGP and Bal-BCE, LiVT successfully trains ViTs well without any additional data and outperforms comparable state-of-the-art methods significantly, e.g., our ViT-B achieves 81.0% Top-1 accuracy in iNaturalist 2018 without bells and whistles. Code is available at //github.com/XuZhengzhuo/LiVT.
Providing model-generated explanations in recommender systems is important to user experience. State-of-the-art recommendation algorithms -- especially the collaborative filtering (CF) based approaches with shallow or deep models -- usually work with various unstructured information sources for recommendation, such as textual reviews, visual images, and various implicit or explicit feedbacks. Though structured knowledge bases were considered in content-based approaches, they have been largely ignored recently due to the availability of vast amount of data and the learning power of many complex models. However, structured knowledge bases exhibit unique advantages in personalized recommendation systems. When the explicit knowledge about users and items is considered for recommendation, the system could provide highly customized recommendations based on users' historical behaviors and the knowledge is helpful for providing informed explanations regarding the recommended items. In this work, we propose to reason over knowledge base embeddings for explainable recommendation. Specifically, we propose a knowledge base representation learning framework to embed heterogeneous entities for recommendation, and based on the embedded knowledge base, a soft matching algorithm is proposed to generate personalized explanations for the recommended items. Experimental results on real-world e-commerce datasets verified the superior recommendation performance and the explainability power of our approach compared with state-of-the-art baselines.