亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Network meta-analysis combines aggregate data (AgD) from multiple randomised controlled trials, assuming that any effect modifiers are balanced across populations. Individual patient data (IPD) meta-regression is the ``gold standard'' method to relax this assumption, however IPD are frequently only available in a subset of studies. Multilevel network meta-regression (ML-NMR) extends IPD meta-regression to incorporate AgD studies whilst avoiding aggregation bias, but currently requires the aggregate-level likelihood to have a known closed form. Notably, this prevents application to time-to-event outcomes. We extend ML-NMR to individual-level likelihoods of any form, by integrating the individual-level likelihood function over the AgD covariate distributions to obtain the respective marginal likelihood contributions. We illustrate with two examples of time-to-event outcomes, showing the performance of ML-NMR in a simulated comparison with little loss of precision from a full IPD analysis, and demonstrating flexible modelling of baseline hazards using cubic M-splines with synthetic data on newly diagnosed multiple myeloma. ML-NMR is a general method for synthesising individual and aggregate level data in networks of all sizes. Extension to general likelihoods, including for survival outcomes, greatly increases the applicability of the method. R and Stan code is provided, and the methods are implemented in the multinma R package.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Several mixed-effects models for longitudinal data have been proposed to accommodate the non-linearity of late-life cognitive trajectories and assess the putative influence of covariates on it. No prior research provides a side-by-side examination of these models to offer guidance on their proper application and interpretation. In this work, we examined five statistical approaches previously used to answer research questions related to non-linear changes in cognitive aging: the linear mixed model (LMM) with a quadratic term, LMM with splines, the functional mixed model, the piecewise linear mixed model, and the sigmoidal mixed model. We first theoretically describe the models. Next, using data from two prospective cohorts with annual cognitive testing, we compared the interpretation of the models by investigating associations of education on cognitive change before death. Lastly, we performed a simulation study to empirically evaluate the models and provide practical recommendations. Except for the LMM-quadratic, the fit of all models was generally adequate to capture non-linearity of cognitive change and models were relatively robust. Although spline-based models have no interpretable nonlinearity parameters, their convergence was easier to achieve, and they allow graphical interpretation. In contrast, piecewise and sigmoidal models, with interpretable non-linear parameters, may require more data to achieve convergence.

With the increasing availability of large scale datasets, computational power and tools like automatic differentiation and expressive neural network architectures, sequential data are now often treated in a data-driven way, with a dynamical model trained from the observation data. While neural networks are often seen as uninterpretable black-box architectures, they can still benefit from physical priors on the data and from mathematical knowledge. In this paper, we use a neural network architecture which leverages the long-known Koopman operator theory to embed dynamical systems in latent spaces where their dynamics can be described linearly, enabling a number of appealing features. We introduce methods that enable to train such a model for long-term continuous reconstruction, even in difficult contexts where the data comes in irregularly-sampled time series. The potential for self-supervised learning is also demonstrated, as we show the promising use of trained dynamical models as priors for variational data assimilation techniques, with applications to e.g. time series interpolation and forecasting.

This study addresses a class of linear mixed-integer programming (MILP) problems that involve uncertainty in the objective function parameters. The parameters are assumed to form a random vector, whose probability distribution can only be observed through a finite training data set. Unlike most of the related studies in the literature, we also consider uncertainty in the underlying data set. The data uncertainty is described by a set of linear constraints for each random sample, and the uncertainty in the distribution (for a fixed realization of data) is defined using a type-1 Wasserstein ball centered at the empirical distribution of the data. The overall problem is formulated as a three-level distributionally robust optimization (DRO) problem. First, we prove that the three-level problem admits a single-level MILP reformulation, if the class of loss functions is restricted to biaffine functions. Secondly, it turns out that for several particular forms of data uncertainty, the outlined problem can be solved reasonably fast by leveraging the nominal MILP problem. Finally, we conduct a computational study, where the out-of-sample performance of our model and computational complexity of the proposed MILP reformulation are explored numerically for several application domains.

High-dimensional matrix regression has been studied in various aspects, such as statistical properties, computational efficiency and application to specific instances including multivariate regression, system identification and matrix compressed sensing. Current studies mainly consider the idealized case that the covariate matrix is obtained without noise, while the more realistic scenario that the covariates may always be corrupted with noise or missing data has received little attention. We consider the general errors-in-variables matrix regression model and proposed a unified framework for low-rank estimation based on nonconvex spectral regularization. Then in the statistical aspect, recovery bounds for any stationary points are provided to achieve statistical consistency. In the computational aspect, the proximal gradient method is applied to solve the nonconvex optimization problem and is proved to converge in polynomial time. Consequences for specific matrix compressed sensing models with additive noise and missing data are obtained via verifying corresponding regularity conditions. Finally, the performance of the proposed nonconvex estimation method is illustrated by numerical experiments.

Regression methods are fundamental for scientific and technological applications. However, fitted models can be highly unreliable outside of their training domain, and hence the quantification of their uncertainty is crucial in many of their applications. Based on the solution of a constrained optimization problem, we propose "prediction rigidities" as a method to obtain uncertainties of arbitrary pre-trained regressors. We establish a strong connection between our framework and Bayesian inference, and we develop a last-layer approximation that allows the new method to be applied to neural networks. This extension affords cheap uncertainties without any modification to the neural network itself or its training procedure. We show the effectiveness of our method on a wide range of regression tasks, ranging from simple toy models to applications in chemistry and meteorology.

We present a new class of Langevin based algorithms, which overcomes many of the known shortcomings of popular adaptive optimizers that are currently used for the fine tuning of deep learning models. Its underpinning theory relies on recent advances of Euler's polygonal approximations for stochastic differential equations (SDEs) with monotone coefficients. As a result, it inherits the stability properties of tamed algorithms, while it addresses other known issues, e.g. vanishing gradients in neural networks. In particular, we provide a nonasymptotic analysis and full theoretical guarantees for the convergence properties of an algorithm of this novel class, which we named TH$\varepsilon$O POULA (or, simply, TheoPouLa). Finally, several experiments are presented with different types of deep learning models, which show the superior performance of TheoPouLa over many popular adaptive optimization algorithms.

Weak supervision searches have in principle the advantages of both being able to train on experimental data and being able to learn distinctive signal properties. However, the practical applicability of such searches is limited by the fact that successfully training a neural network via weak supervision can require a large amount of signal. In this work, we seek to create neural networks that can learn from less experimental signal by using transfer and meta-learning. The general idea is to first train a neural network on simulations, thereby learning concepts that can be reused or becoming a more efficient learner. The neural network would then be trained on experimental data and should require less signal because of its previous training. We find that transfer and meta-learning can substantially improve the performance of weak supervision searches.

This paper presents a method for thematic agreement assessment of geospatial data products of different semantics and spatial granularities, which may be affected by spatial offsets between test and reference data. The proposed method uses a multi-scale framework allowing for a probabilistic evaluation whether thematic disagreement between datasets is induced by spatial offsets due to different nature of the datasets or not. We test our method using real-estate derived settlement locations and remote-sensing derived building footprint data.

Selecting an evaluation metric is fundamental to model development, but uncertainty remains about when certain metrics are preferable and why. This paper introduces the concept of resolving power to describe the ability of an evaluation metric to distinguish between binary classifiers of similar quality. This ability depends on two attributes: 1. The metric's response to improvements in classifier quality (its signal), and 2. The metric's sampling variability (its noise). The paper defines resolving power generically as a metric's sampling uncertainty scaled by its signal. The primary application of resolving power is to assess threshold-free evaluation metrics, such as the area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC). A simulation study compares the AUROC and the AUPRC in a variety of contexts. It finds that the AUROC generally has greater resolving power, but that the AUPRC is better when searching among high-quality classifiers applied to low prevalence outcomes. The paper concludes by proposing an empirical method to estimate resolving power that can be applied to any dataset and any initial classification model.

Heuristic tools from statistical physics have been used in the past to locate the phase transitions and compute the optimal learning and generalization errors in the teacher-student scenario in multi-layer neural networks. In this contribution, we provide a rigorous justification of these approaches for a two-layers neural network model called the committee machine. We also introduce a version of the approximate message passing (AMP) algorithm for the committee machine that allows to perform optimal learning in polynomial time for a large set of parameters. We find that there are regimes in which a low generalization error is information-theoretically achievable while the AMP algorithm fails to deliver it, strongly suggesting that no efficient algorithm exists for those cases, and unveiling a large computational gap.

北京阿比特科技有限公司