亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Item Response Theory (IRT) models have received growing interest in health science for analyzing latent constructs such as depression, anxiety, quality of life or cognitive functioning from the information provided by each individual's items responses. However, in the presence of repeated item measures, IRT methods usually assume that the measurement occasions are made at the exact same time for all patients. In this paper, we show how the IRT methodology can be combined with the mixed model theory to provide a dynamic IRT model which exploits the information provided at item-level for a measurement scale while simultaneously handling observation times that may vary across individuals. The latent construct is a latent process defined in continuous time that is linked to the observed item responses through a measurement model at each individual- and occasion-specific observation time; we focus here on a Graded Response Model for binary and ordinal items. The Maximum Likelihood Estimation procedure of the dynamic IRT model is available in the R package lcmm. The proposed approach is contextualized in a clinical example in end-stage renal disease, the PREDIALA study. The objective is to study the trajectories of depressive symptomatology (as measured by 7 items of the Hospital Anxiety and Depression scale) according to the time on renal transplant waiting list and the renal replacement therapy. We also illustrate how the method can be used to assess Differential Item Functioning and lack of measurement invariance over time.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 可理解性 · Extensibility · 分解的 · 可辨認的 ·
2021 年 11 月 17 日

One of the major research questions regarding human microbiome studies is the feasibility of designing interventions that modulate the composition of the microbiome to promote health and cure disease. This requires extensive understanding of the modulating factors of the microbiome, such as dietary intake, as well as the relation between microbial composition and phenotypic outcomes, such as body mass index (BMI). Previous efforts have modeled these data separately, employing two-step approaches that can produce biased interpretations of the results. Here, we propose a Bayesian joint model that simultaneously identifies clinical covariates associated with microbial composition data and predicts a phenotypic response using information contained in the compositional data. Using spike-and-slab priors, our approach can handle high-dimensional compositional as well as clinical data. Additionally, we accommodate the compositional structure of the data via balances and overdispersion typically found in microbial samples. We apply our model to understand the relations between dietary intake, microbial samples, and BMI. In this analysis, we find numerous associations between microbial taxa and dietary factors that may lead to a microbiome that is generally more hospitable to the development of chronic diseases, such as obesity. Additionally, we demonstrate on simulated data how our method outperforms two-step approaches and also present a sensitivity analysis.

Data imbalance is common in production data, where controlled production settings require data to fall within a narrow range of variation and data are collected with quality assessment in mind, rather than data analytic insights. This imbalance negatively impacts the predictive performance of models on underrepresented observations. We propose sampling to adjust for this imbalance with the goal of improving the performance of models trained on historical production data. We investigate the use of three sampling approaches to adjust for imbalance. The goal is to downsample the covariates in the training data and subsequently fit a regression model. We investigate how the predictive power of the model changes when using either the sampled or the original data for training. We apply our methods on a large biopharmaceutical manufacturing data set from an advanced simulation of penicillin production and find that fitting a model using the sampled data gives a small reduction in the overall predictive performance, but yields a systematically better performance on underrepresented observations. In addition, the results emphasize the need for alternative, fair, and balanced model evaluations.

There has been a rich development of vector autoregressive (VAR) models for modeling temporally correlated multivariate outcomes. However, the existing VAR literature has largely focused on single subject parametric analysis, with some recent extensions to multi-subject modeling with known subgroups. Motivated by the need for flexible Bayesian methods that can pool information across heterogeneous samples in an unsupervised manner, we develop a novel class of non-parametric Bayesian VAR models based on heterogeneous multi-subject data. In particular, we propose a product of Dirichlet process mixture priors that enables separate clustering at multiple scales, which result in partially overlapping clusters that provide greater flexibility. We develop several variants of the method to cater to varying levels of heterogeneity. We implement an efficient posterior computation scheme and illustrate posterior consistency properties under reasonable assumptions on the true density. Extensive numerical studies show distinct advantages over competing methods in terms of estimating model parameters and identifying the true clustering and sparsity structures. Our analysis of resting state fMRI data from the Human Connectome Project reveals biologically interpretable differences between distinct fluid intelligence groups, and reproducible parameter estimates. In contrast, single-subject VAR analyses followed by permutation testing result in negligible differences, which is biologically implausible.

The introduction of COVID-19 lockdown measures and an outlook on return to normality are demanding societal changes. Among the most pressing questions is how individuals adjust to the pandemic. This paper examines the emotional responses to the pandemic in a repeated-measures design. Data (n=1698) were collected in April 2020 (during strict lockdown measures) and in April 2021 (when vaccination programmes gained traction). We asked participants to report their emotions and express these in text data. Statistical tests revealed an average trend towards better adjustment to the pandemic. However, clustering analyses suggested a more complex heterogeneous pattern with a well-coping and a resigning subgroup of participants. Linguistic computational analyses uncovered that topics and n-gram frequencies shifted towards attention to the vaccination programme and away from general worrying. Implications for public mental health efforts in identifying people at heightened risk are discussed. The dataset is made publicly available.

In many practices, scientists are particularly interested in detecting which of the predictors are truly associated with a multivariate response. It is more accurate to model multiple responses as one vector rather than separating each component one by one. This is particularly true for complex traits having multiple correlated components. A Bayesian multivariate variable selection (BMVS) approach is proposed to select important predictors influencing the multivariate response from a candidate pool with an ultrahigh dimension. By applying the sample-size-dependent spike and slab priors, the BMVS approach satisfies the strong selection consistency property under certain conditions, which represents the advantages of BMVS over other existing Bayesian multivariate regression-based approaches. The proposed approach considers the covariance structure of multiple responses without assuming independence and integrates the estimation of covariance-related parameters together with all regression parameters into one framework through a fast updating MCMC procedure. It is demonstrated through simulations that the BMVS approach outperforms some other relevant frequentist and Bayesian approaches. The proposed BMVS approach possesses the flexibility of wide applications, including genome-wide association studies with multiple correlated phenotypes and a large scale of genetic variants and/or environmental variables, as demonstrated in the real data analyses section. The computer code and test data of the proposed method are available as an R package.

Many popular specifications for Vector Autoregressions (VARs) with multivariate stochastic volatility are not invariant to the way the variables are ordered due to the use of a Cholesky decomposition for the error covariance matrix. We show that the order invariance problem in existing approaches is likely to become more serious in large VARs. We propose the use of a specification which avoids the use of this Cholesky decomposition. We show that the presence of multivariate stochastic volatility allows for identification of the proposed model and prove that it is invariant to ordering. We develop a Markov Chain Monte Carlo algorithm which allows for Bayesian estimation and prediction. In exercises involving artificial and real macroeconomic data, we demonstrate that the choice of variable ordering can have non-negligible effects on empirical results. In a macroeconomic forecasting exercise involving VARs with 20 variables we find that our order-invariant approach leads to the best forecasts and that some choices of variable ordering can lead to poor forecasts using a conventional, non-order invariant, approach.

Recommender systems are software applications that help users find items of interest in situations of information overload in a personalized way, using knowledge about the needs and preferences of individual users. In conversational recommendation approaches, these needs and preferences are acquired by the system in an interactive, multi-turn dialog. A common approach in the literature to drive such dialogs is to incrementally ask users about their preferences regarding desired and undesired item features or regarding individual items. A central research goal in this context is efficiency, evaluated with respect to the number of required interactions until a satisfying item is found. This is usually accomplished by making inferences about the best next question to ask to the user. Today, research on dialog efficiency is almost entirely empirical, aiming to demonstrate, for example, that one strategy for selecting questions is better than another one in a given application. With this work, we complement empirical research with a theoretical, domain-independent model of conversational recommendation. This model, which is designed to cover a range of application scenarios, allows us to investigate the efficiency of conversational approaches in a formal way, in particular with respect to the computational complexity of devising optimal interaction strategies. Through such a theoretical analysis we show that finding an efficient conversational strategy is NP-hard, and in PSPACE in general, but for particular kinds of catalogs the upper bound lowers to POLYLOGSPACE. From a practical point of view, this result implies that catalog characteristics can strongly influence the efficiency of individual conversational strategies and should therefore be considered when designing new strategies. A preliminary empirical analysis on datasets derived from a real-world one aligns with our findings.

Context information in search sessions has proven to be useful for capturing user search intent. Existing studies explored user behavior sequences in sessions in different ways to enhance query suggestion or document ranking. However, a user behavior sequence has often been viewed as a definite and exact signal reflecting a user's behavior. In reality, it is highly variable: user's queries for the same intent can vary, and different documents can be clicked. To learn a more robust representation of the user behavior sequence, we propose a method based on contrastive learning, which takes into account the possible variations in user's behavior sequences. Specifically, we propose three data augmentation strategies to generate similar variants of user behavior sequences and contrast them with other sequences. In so doing, the model is forced to be more robust regarding the possible variations. The optimized sequence representation is incorporated into document ranking. Experiments on two real query log datasets show that our proposed model outperforms the state-of-the-art methods significantly, which demonstrates the effectiveness of our method for context-aware document ranking.

Data augmentation is rapidly gaining attention in machine learning. Synthetic data can be generated by simple transformations or through the data distribution. In the latter case, the main challenge is to estimate the label associated to new synthetic patterns. This paper studies the effect of generating synthetic data by convex combination of patterns and the use of these as unsupervised information in a semi-supervised learning framework with support vector machines, avoiding thus the need to label synthetic examples. We perform experiments on a total of 53 binary classification datasets. Our results show that this type of data over-sampling supports the well-known cluster assumption in semi-supervised learning, showing outstanding results for small high-dimensional datasets and imbalanced learning problems.

In this paper, we propose a novel sequence-aware recommendation model. Our model utilizes self-attention mechanism to infer the item-item relationship from user's historical interactions. With self-attention, it is able to estimate the relative weights of each item in user interaction trajectories to learn better representations for user's transient interests. The model is finally trained in a metric learning framework, taking both short-term and long-term intentions into consideration. Experiments on a wide range of datasets on different domains demonstrate that our approach outperforms the state-of-the-art by a wide margin.

北京阿比特科技有限公司