亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper considers the $\varepsilon$-differentially private (DP) release of an approximate cumulative distribution function (CDF) of the samples in a dataset. We assume that the true (approximate) CDF is obtained after lumping the data samples into a fixed number $K$ of bins. In this work, we extend the well-known binary tree mechanism to the class of \emph{level-uniform tree-based} mechanisms and identify $\varepsilon$-DP mechanisms that have a small $\ell_2$-error. We identify optimal or close-to-optimal tree structures when either of the parameters, which are the branching factors or the privacy budgets at each tree level, are given, and when the algorithm designer is free to choose both sets of parameters. Interestingly, when we allow the branching factors to take on real values, under certain mild restrictions, the optimal level-uniform tree-based mechanism is obtained by choosing equal branching factors \emph{independent} of $K$, and equal privacy budgets at all levels. Furthermore, for selected $K$ values, we explicitly identify the optimal \emph{integer} branching factors and tree height, assuming equal privacy budgets at all levels. Finally, we describe general strategies for improving the private CDF estimates further, by combining multiple noisy estimates and by post-processing the estimates for consistency.

相關內容

A $(\beta,\delta,\Delta)$-padded decomposition of an edge-weighted graph $G = (V,E,w)$ is a stochastic decomposition into clusters of diameter at most $\Delta$ such that for every vertex $v\in V$, the probability that $\rm{ball}_G(v,\gamma\Delta)$ is entirely contained in the cluster containing $v$ is at least $e^{-\beta\gamma}$ for every $\gamma \in [0,\delta]$. Padded decompositions have been studied for decades and have found numerous applications, including metric embedding, multicommodity flow-cut gap, multicut, and zero extension problems, to name a few. In these applications, parameter $\beta$, called the padding parameter, is the most important parameter since it decides either the distortion or the approximation ratios. For general graphs with $n$ vertices, $\beta = \Theta(\log n)$. Klein, Plotkin, and Rao showed that $K_r$-minor-free graphs have padding parameter $\beta = O(r^3)$, which is a significant improvement over general graphs when $r$ is a constant. A long-standing conjecture is to construct a padded decomposition for $K_r$-minor-free graphs with padding parameter $\beta = O(\log r)$. Despite decades of research, the best-known result is $\beta = O(r)$, even for graphs with treewidth at most $r$. In this work, we make significant progress toward the aforementioned conjecture by showing that graphs with treewidth $\rm{tw}$ admit a padded decomposition with padding parameter $O(\log \rm{tw})$, which is tight. As corollaries, we obtain an exponential improvement in dependency on treewidth in a host of algorithmic applications: $O(\sqrt{ \log n \cdot \log(\rm{tw})})$ flow-cut gap, max flow-min multicut ratio of $O(\log(\rm{tw}))$, an $O(\log(\rm{tw}))$ approximation for the 0-extension problem, an $\ell^{O(\log n)}_\infty$ embedding with distortion $O(\log \rm{tw})$, and an $O(\log \rm{tw})$ bound for integrality gap for the uniform sparsest cut.

We consider a state-space model (SSM) parametrized by some parameter $\theta$ and aim at performing joint parameter and state inference. A popular idea to carry out this task is to replace $\theta$ by a Markov chain $(\theta_t)_{t\geq 0}$ and then to apply a filtering algorithm to the extended, or self-organizing SSM (SO-SSM). However, the practical implementation of this idea in a theoretically justified way has remained an open problem. In this paper we fill this gap by introducing constructions of $(\theta_t)_{t\geq 0}$ that ensure the validity of the SO-SSM for joint parameter and state inference. Notably, we show that such SO-SSMs can be defined even if $\|\mathrm{Var}(\theta_{t}|\theta_{t-1})\|\rightarrow 0$ slowly as $t\rightarrow\infty$. This result is important since these models can be efficiently approximated using a particle filter. While SO-SSMs have been introduced for online inference, the development of iterated filtering (IF) has shown that they can also serve for computing the maximum likelihood estimator of an SSM. We also derive constructions of $(\theta_t)_{t\geq 0}$ and theoretical guarantees tailored to these specific applications of SO-SSMs and introduce new IF algorithms. From a practical point of view, the algorithms we develop are simple to implement and only require minimal tuning to perform well.

We study the question of local testability of low (constant) degree functions from a product domain $S_1 \times \dots \times {S}_n$ to a field $\mathbb{F}$, where ${S_i} \subseteq \mathbb{F}$ can be arbitrary constant sized sets. We show that this family is locally testable when the grid is "symmetric". That is, if ${S_i} = {S}$ for all i, there is a probabilistic algorithm using constantly many queries that distinguishes whether $f$ has a polynomial representation of degree at most $d$ or is $\Omega(1)$-far from having this property. In contrast, we show that there exist asymmetric grids with $|{S}_1| =\dots= |{S}_n| = 3$ for which testing requires $\omega_n(1)$ queries, thereby establishing that even in the context of polynomials, local testing depends on the structure of the domain and not just the distance of the underlying code. The low-degree testing problem has been studied extensively over the years and a wide variety of tools have been applied to propose and analyze tests. Our work introduces yet another new connection in this rich field, by building low-degree tests out of tests for "junta-degrees". A function $f : {S}_1 \times \dots \times {S}_n \to {G}$, for an abelian group ${G}$ is said to be a junta-degree-$d$ function if it is a sum of $d$-juntas. We derive our low-degree test by giving a new local test for junta-degree-$d$ functions. For the analysis of our tests, we deduce a small-set expansion theorem for spherical noise over large grids, which may be of independent interest.

We propose a two-stage memory retrieval dynamics for modern Hopfield models, termed $\mathtt{U\text{-}Hop}$, with enhanced memory capacity. Our key contribution is a learnable feature map $\Phi$ which transforms the Hopfield energy function into kernel space. This transformation ensures convergence between the local minima of energy and the fixed points of retrieval dynamics within the kernel space. Consequently, the kernel norm induced by $\Phi$ serves as a novel similarity measure. It utilizes the stored memory patterns as learning data to enhance memory capacity across all modern Hopfield models. Specifically, we accomplish this by constructing a separation loss $\mathcal{L}_\Phi$ that separates the local minima of kernelized energy by separating stored memory patterns in kernel space. Methodologically, $\mathtt{U\text{-}Hop}$ memory retrieval process consists of: (Stage I) minimizing separation loss for a more uniform memory (local minimum) distribution, followed by (Stage II) standard Hopfield energy minimization for memory retrieval. This results in a significant reduction of possible metastable states in the Hopfield energy function, thus enhancing memory capacity by preventing memory confusion. Empirically, with real-world datasets, we demonstrate that $\mathtt{U\text{-}Hop}$ outperforms all existing modern Hopfield models and state-of-the-art similarity measures, achieving substantial improvements in both associative memory retrieval and deep learning tasks. Code is available at //github.com/MAGICS-LAB/UHop ; future updates are on arXiv:2404.03827

Secure aggregation protocols ensure the privacy of users' data in federated learning by preventing the disclosure of local gradients. Many existing protocols impose significant communication and computational burdens on participants and may not efficiently handle the large update vectors typical of machine learning models. Correspondingly, we present e-SeaFL, an efficient verifiable secure aggregation protocol taking only one communication round during the aggregation phase. e-SeaFL allows the aggregation server to generate proof of honest aggregation to participants via authenticated homomorphic vector commitments. Our core idea is the use of assisting nodes to help the aggregation server, under similar trust assumptions existing works place upon the participating users. Our experiments show that the user enjoys an order of magnitude efficiency improvement over the state-of-the-art (IEEE S\&P 2023) for large gradient vectors with thousands of parameters. Our open-source implementation is available at //github.com/vt-asaplab/e-SeaFL.

Oblivious dimension reduction, \`{a} la the Johnson-Lindenstrauss (JL) Lemma, is a fundamental approach for processing high-dimensional data. We study this approach for Uniform Facility Location (UFL) on a Euclidean input $X\subset\mathbb{R}^d$, where facilities can lie in the ambient space (not restricted to $X$). Our main result is that target dimension $m=\tilde{O}(\epsilon^{-2}\mathrm{ddim})$ suffices to $(1+\epsilon)$-approximate the optimal value of UFL on inputs whose doubling dimension is bounded by $\mathrm{ddim}$. It significantly improves over previous results, that could only achieve $O(1)$-approximation [Narayanan, Silwal, Indyk, and Zamir, ICML 2021] or dimension $m=O(\epsilon^{-2}\log n)$ for $n=|X|$, which follows from [Makarychev, Makarychev, and Razenshteyn, STOC 2019]. Our oblivious dimension reduction has immediate implications to streaming and offline algorithms, by employing known algorithms for low dimension. In dynamic geometric streams, it implies a $(1+\epsilon)$-approximation algorithm that uses $O(\epsilon^{-1}\log n)^{\tilde{O}(\mathrm{ddim}/\epsilon^{2})}$ bits of space, which is the first streaming algorithm for UFL to utilize the doubling dimension. In the offline setting, it implies a $(1+\epsilon)$-approximation algorithm, which we further refine to run in time $( (1/\epsilon)^{\tilde{O}(\mathrm{ddim})} d + 2^{(1/\epsilon)^{\tilde{O}(\mathrm{ddim})}}) \cdot \tilde{O}(n) $. Prior work has a similar running time but requires some restriction on the facilities [Cohen-Addad, Feldmann and Saulpic, JACM 2021]. Our main technical contribution is a fast procedure to decompose an input $X$ into several $k$-median instances for small $k$. This decomposition is inspired by, but has several significant differences from [Czumaj, Lammersen, Monemizadeh and Sohler, SODA 2013], and is key to both our dimension reduction and our PTAS.

The paper concerns the $d$-dimensional stochastic approximation recursion, $$ \theta_{n+1}= \theta_n + \alpha_{n + 1} f(\theta_n, \Phi_{n+1}) $$ where $ \{ \Phi_n \}$ is a stochastic process on a general state space, satisfying a conditional Markov property that allows for parameter-dependent noise. The main results are established under additional conditions on the mean flow and a version of the Donsker-Varadhan Lyapunov drift condition known as (DV3): {(i)} An appropriate Lyapunov function is constructed that implies convergence of the estimates in $L_4$. {(ii)} A functional central limit theorem (CLT) is established, as well as the usual one-dimensional CLT for the normalized error. Moment bounds combined with the CLT imply convergence of the normalized covariance $\textsf{E} [ z_n z_n^T ]$ to the asymptotic covariance in the CLT, where $z_n{=:} (\theta_n-\theta^*)/\sqrt{\alpha_n}$. {(iii)} The CLT holds for the normalized version $z^{\text{PR}}_n{=:} \sqrt{n} [\theta^{\text{PR}}_n -\theta^*]$, of the averaged parameters $\theta^{\text{PR}}_n {=:} n^{-1} \sum_{k=1}^n\theta_k$, subject to standard assumptions on the step-size. Moreover, the covariance in the CLT coincides with the minimal covariance of Polyak and Ruppert. {(iv)} An example is given where $f$ and $\bar{f}$ are linear in $\theta$, and $\Phi$ is a geometrically ergodic Markov chain but does not satisfy (DV3). While the algorithm is convergent, the second moment of $\theta_n$ is unbounded and in fact diverges. {\bf This arXiv version 3 represents a major extension of the results in prior versions.} The main results now allow for parameter-dependent noise, as is often the case in applications to reinforcement learning.

We introduce a simple, stochastic, a-posteriori, turbulence closure model based on a reduced subgrid scale term. This subgrid scale term is tailor-made to capture the statistics of a small set of spatially-integrate quantities of interest (QoIs), with only one unresolved scalar time series per QoI. In contrast to other data-driven surrogates the dimension of the "learning problem" is reduced from an evolving field to one scalar time series per QoI. We use an a-posteriori, nudging approach to find the distribution of the scalar series over time. This approach has the advantage of taking the interaction between the solver and the surrogate into account. A stochastic surrogate parametrization is obtained by random sampling from the found distribution for the scalar time series. Compared to an a-priori trained convolutional neural network, evaluating the new method is computationally much cheaper and gives similar long-term statistics.

Offline reinforcement learning learns from a static dataset without interacting with environments, which ensures security and thus owns a good application prospect. However, directly applying naive reinforcement learning algorithm usually fails in an offline environment due to inaccurate Q value approximation caused by out-of-distribution (OOD) state-actions. It is an effective way to solve this problem by penalizing the Q-value of OOD state-actions. Among the methods of punishing OOD state-actions, count-based methods have achieved good results in discrete domains in a simple form. Inspired by it, a novel pseudo-count method for continuous domains called Grid-Mapping Pseudo-Count method (GPC) is proposed by extending the count-based method from discrete to continuous domains. Firstly, the continuous state and action space are mapped to discrete space using Grid-Mapping, then the Q-values of OOD state-actions are constrained through pseudo-count. Secondly, the theoretical proof is given to show that GPC can obtain appropriate uncertainty constraints under fewer assumptions than other pseudo-count methods. Thirdly, GPC is combined with Soft Actor-Critic algorithm (SAC) to get a new algorithm called GPC-SAC. Lastly, experiments on D4RL datasets are given to show that GPC-SAC has better performance and less computational cost than other algorithms that constrain the Q-value.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

北京阿比特科技有限公司