亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The rapid growth of software supply chain attacks has attracted considerable attention to software bill of materials (SBOM). SBOMs are a crucial building block to ensure the transparency of software supply chains that helps improve software supply chain security. Although there are significant efforts from academia and industry to facilitate SBOM development, it is still unclear how practitioners perceive SBOMs and what are the challenges of adopting SBOMs in practice. Furthermore, existing SBOM-related studies tend to be ad-hoc and lack software engineering focuses. To bridge this gap, we conducted the first empirical study to interview and survey SBOM practitioners. We applied a mixed qualitative and quantitative method for gathering data from 17 interviewees and 65 survey respondents from 15 countries across five continents to understand how practitioners perceive the SBOM field. We summarized 26 statements and grouped them into three topics on SBOM's states of practice. Based on the study results, we derived a goal model and highlighted future directions where practitioners can put in their effort.

相關內容

We present a multimodal deep learning (MDL) framework for predicting physical properties of a 10-dimensional acrylic polymer composite material by merging physical attributes and chemical data. Our MDL model comprises four modules, including three generative deep learning models for material structure characterization and a fourth model for property prediction. Our approach handles an 18-dimensional complexity, with 10 compositional inputs and 8 property outputs, successfully predicting 913,680 property data points across 114,210 composition conditions. This level of complexity is unprecedented in computational materials science, particularly for materials with undefined structures. We propose a framework to analyze the high-dimensional information space for inverse material design, demonstrating flexibility and adaptability to various materials and scales, provided sufficient data is available. This study advances future research on different materials and the development of more sophisticated models, drawing us closer to the ultimate goal of predicting all properties of all materials.

The Object Constraint Language (OCL) is a declarative language that adds constraints and object query expressions to MOF models. Despite its potential to provide precision and conciseness to UML models, the unfamiliar syntax of OCL has hindered its adoption. Recent advancements in LLMs, such as GPT-3, have shown their capability in many NLP tasks, including semantic parsing and text generation. Codex, a GPT-3 descendant, has been fine-tuned on publicly available code from GitHub and can generate code in many programming languages. We investigate the reliability of OCL constraints generated by Codex from natural language specifications. To achieve this, we compiled a dataset of 15 UML models and 168 specifications and crafted a prompt template with slots to populate with UML information and the target task, using both zero- and few-shot learning methods. By measuring the syntactic validity and execution accuracy metrics of the generated OCL constraints, we found that enriching the prompts with UML information and enabling few-shot learning increases the reliability of the generated OCL constraints. Furthermore, the results reveal a close similarity based on sentence embedding between the generated OCL constraints and the human-written ones in the ground truth, implying a level of clarity and understandability in the generated OCL constraints by Codex.

Images are increasingly being shared by software developers in diverse channels including question-and-answer forums like Stack Overflow. Although prior work has pointed out that these images are meaningful and provide complementary information compared to their associated text, how images are used to support questions is empirically unknown. To address this knowledge gap, in this paper we specifically conduct an empirical study to investigate (I) the characteristics of images, (II) the extent to which images are used in different question types, and (III) the role of images on receiving answers. Our results first show that user interface is the most common image content and undesired output is the most frequent purpose for sharing images. Moreover, these images essentially facilitate the understanding of 68% of sampled questions. Second, we find that discrepancy questions are more relatively frequent compared to those without images, but there are no significant differences observed in description length in all types of questions. Third, the quantitative results statistically validate that questions with images are more likely to receive accepted answers, but do not speed up the time to receive answers. Our work demonstrates the crucial role that images play by approaching the topic from a new angle and lays the foundation for future opportunities to use images to assist in tasks like generating questions and identifying question-relatedness.

Artificial intelligence (AI) researchers have been developing and refining large language models (LLMs) that exhibit remarkable capabilities across a variety of domains and tasks, challenging our understanding of learning and cognition. The latest model developed by OpenAI, GPT-4, was trained using an unprecedented scale of compute and data. In this paper, we report on our investigation of an early version of GPT-4, when it was still in active development by OpenAI. We contend that (this early version of) GPT-4 is part of a new cohort of LLMs (along with ChatGPT and Google's PaLM for example) that exhibit more general intelligence than previous AI models. We discuss the rising capabilities and implications of these models. We demonstrate that, beyond its mastery of language, GPT-4 can solve novel and difficult tasks that span mathematics, coding, vision, medicine, law, psychology and more, without needing any special prompting. Moreover, in all of these tasks, GPT-4's performance is strikingly close to human-level performance, and often vastly surpasses prior models such as ChatGPT. Given the breadth and depth of GPT-4's capabilities, we believe that it could reasonably be viewed as an early (yet still incomplete) version of an artificial general intelligence (AGI) system. In our exploration of GPT-4, we put special emphasis on discovering its limitations, and we discuss the challenges ahead for advancing towards deeper and more comprehensive versions of AGI, including the possible need for pursuing a new paradigm that moves beyond next-word prediction. We conclude with reflections on societal influences of the recent technological leap and future research directions.

Mainstream food delivery platforms, like DoorDash and Uber Eats, have been the locus of fierce policy debates about their unfair business and labor practices. At the same time, hundreds of independent food delivery services provide alternative opportunities to many communities across the U.S. We surveyed operators of independent food delivery platforms to learn about their perception of the role of public policy. We found conflicting opinions on whether and how policy should interact with their businesses, ranging from not wanting policymakers to interfere to articulating specific policies that would curtail mainstream platforms' business practices. We provide insights for technologists and policymakers interested in the sociotechnical challenges of local marketplaces.

The success of ChatGPT has recently attracted numerous efforts to replicate it, with instruction-tuning strategies being a key factor in achieving remarkable results. Instruction-tuning not only significantly enhances the model's performance and generalization but also makes the model's generated results more consistent with human speech patterns. However current research rarely studies the impact of different amounts of instruction data on model performance, especially in the real-world use cases. In this paper we explore the performance of large language models based on instruction tuning across different scales of instruction data. An evaluation dataset consisting of 12 major online use cases is constructed in the experiment. With Bloomz-7B1-mt as the base model, the results show that 1) merely increasing the amount of instruction data leads to continuous improvement in tasks such as open-ended generation, 2) in tasks such as math and code, the model performance curve remains quite flat while increasing data size. We further analyze the possible causes of these phenomena and propose potential future research directions such as effectively selecting high-quality training data, scaling base models and training methods specialized for hard tasks. We will release our training and evaluation datasets, as well as model checkpoints.

Quantum Intermediate Representation (QIR) is a Microsoft-developed, LLVM-based intermediate representation for quantum program compilers. QIR aims to provide a general solution for quantum program compilers independent of front-end languages and back-end hardware, thus avoiding duplicate development of intermediate representations and compilers. Since it is still under development, QIR is described in natural language and lacks a formal definition, leading to ambiguity in its interpretation and a lack of rigor in implementing quantum functions. In this paper, we provide formal definitions for the data types and instruction sets of QIR, aiming to provide correctness and security guarantees for operations and intermediate code conversions in QIR. To validate our design, we show some samples of unsafe QIR code where errors can be detected by our formal approach.

Grammatical Error Correction (GEC) is the task of automatically detecting and correcting errors in text. The task not only includes the correction of grammatical errors, such as missing prepositions and mismatched subject-verb agreement, but also orthographic and semantic errors, such as misspellings and word choice errors respectively. The field has seen significant progress in the last decade, motivated in part by a series of five shared tasks, which drove the development of rule-based methods, statistical classifiers, statistical machine translation, and finally neural machine translation systems which represent the current dominant state of the art. In this survey paper, we condense the field into a single article and first outline some of the linguistic challenges of the task, introduce the most popular datasets that are available to researchers (for both English and other languages), and summarise the various methods and techniques that have been developed with a particular focus on artificial error generation. We next describe the many different approaches to evaluation as well as concerns surrounding metric reliability, especially in relation to subjective human judgements, before concluding with an overview of recent progress and suggestions for future work and remaining challenges. We hope that this survey will serve as comprehensive resource for researchers who are new to the field or who want to be kept apprised of recent developments.

Many peer-review venues are either using or looking to use algorithms to assign submissions to reviewers. The crux of such automated approaches is the notion of the "similarity score"--a numerical estimate of the expertise of a reviewer in reviewing a paper--and many algorithms have been proposed to compute these scores. However, these algorithms have not been subjected to a principled comparison, making it difficult for stakeholders to choose the algorithm in an evidence-based manner. The key challenge in comparing existing algorithms and developing better algorithms is the lack of the publicly available gold-standard data that would be needed to perform reproducible research. We address this challenge by collecting a novel dataset of similarity scores that we release to the research community. Our dataset consists of 477 self-reported expertise scores provided by 58 researchers who evaluated their expertise in reviewing papers they have read previously. We use this data to compare several popular algorithms employed in computer science conferences and come up with recommendations for stakeholders. Our main findings are as follows. First, all algorithms make a non-trivial amount of error. For the task of ordering two papers in terms of their relevance for a reviewer, the error rates range from 12%-30% in easy cases to 36%-43% in hard cases, highlighting the vital need for more research on the similarity-computation problem. Second, most existing algorithms are designed to work with titles and abstracts of papers, and in this regime the Specter+MFR algorithm performs best. Third, to improve performance, it may be important to develop modern deep-learning based algorithms that can make use of the full texts of papers: the classical TD-IDF algorithm enhanced with full texts of papers is on par with the deep-learning based Specter+MFR that cannot make use of this information.

Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. As the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Different from previous surveys, this survey paper reviews over forty representative transfer learning approaches from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.

北京阿比特科技有限公司