This paper considers learning the hidden causal network of a linear networked dynamical system (NDS) from the time series data at some of its nodes -- partial observability. The dynamics of the NDS are driven by colored noise that generates spurious associations across pairs of nodes, rendering the problem much harder. To address the challenge of noise correlation and partial observability, we assign to each pair of nodes a feature vector computed from the time series data of observed nodes. The feature embedding is engineered to yield structural consistency: there exists an affine hyperplane that consistently partitions the set of features, separating the feature vectors corresponding to connected pairs of nodes from those corresponding to disconnected pairs. The causal inference problem is thus addressed via clustering the designed features. We demonstrate with simple baseline supervised methods the competitive performance of the proposed causal inference mechanism under broad connectivity regimes and noise correlation levels, including a real world network. Further, we devise novel technical guarantees of structural consistency for linear NDS under the considered regime.
Recently, there has been increasing concern about the vulnerability of deep neural network (DNN)-based synthetic aperture radar (SAR) automatic target recognition (ATR) to adversarial attacks, where a DNN could be easily deceived by clean input with imperceptible but aggressive perturbations. This paper studies the synthetic-to-measured (S2M) transfer setting, where an attacker generates adversarial perturbation based solely on synthetic data and transfers it against victim models trained with measured data. Compared with the current measured-to-measured (M2M) transfer setting, our approach does not need direct access to the victim model or the measured SAR data. We also propose the transferability estimation attack (TEA) to uncover the adversarial risks in this more challenging and practical scenario. The TEA makes full use of the limited similarity between the synthetic and measured data pairs for blind estimation and optimization of S2M transferability, leading to feasible surrogate model enhancement without mastering the victim model and data. Comprehensive evaluations based on the publicly available synthetic and measured paired labeled experiment (SAMPLE) dataset demonstrate that the TEA outperforms state-of-the-art methods and can significantly enhance various attack algorithms in computer vision and remote sensing applications. Codes and data are available at //github.com/scenarri/S2M-TEA.
The advancement of transformer neural networks has significantly elevated the capabilities of sentence similarity models, particularly in creating effective vector representations of natural language inputs. However, these models face notable challenges in domain-specific contexts, especially in highly specialized scientific sub-fields. Traditional methods often struggle in this regime, either overgeneralizing similarities within a niche or being overly sensitive to minor differences, resulting in inaccurate text classification and subpar vector representation. In an era where retrieval augmentation and search are increasingly crucial, precise and concise numerical representations are essential. In this paper, we target this issue by assembling niche datasets using co-citations as a similarity metric, focusing on biomedical domains. We employ two key strategies for fine-tuning state-of-the-art models: 1. Domain-specific Fine-Tuning, which tailors pretrained models to a single domain, and 2. Universal Applicability with Mixture of Experts (MoE), adapting pretrained models with enforced routing for multiple domains simultaneously. Our training approach emphasizes the use of abstracts for faster training, incorporating Multiple Negative Rankings loss for efficient contrastive learning. Notably, our MoE variants, equipped with $N$ experts, achieve the efficacy of $N$ individual models, heralding a new era of versatile, One-Size-Fits-All transformer networks for various tasks. This methodology marks significant advancements in scientific text classification metrics and holds promise for enhancing vector database search and compilation.
Existing research on Domain Robustness (DR) suffers from disparate setups, lack of task variety, and scarce research on recent capabilities such as few-shot learning. Furthermore, we claim that the common practice of measuring DR might further obscure the picture. Current research focuses on challenge sets and relies solely on the Source Drop (SD): Using the source in-domain performance as a reference point for degradation. However, the Target Drop (TD), which measures degradation from the target in-domain performance, should be used as a complementary point of view. In this study, we developed a benchmark comprised of seven NLP tasks, including classification, QA, and generation. Our benchmark focuses on natural topical domain shifts and enables measuring both the SD and the TD. Our comprehensive study, involving over 14,000 domain shifts across 18 fine-tuned and few-shot models, shows that both model types suffer from drops upon domain shifts. While fine-tuned models excel in-domain, few-shot LLMs often surpass them cross-domain, showing better robustness. In addition, we found that a large SD can be explained by shifting to a harder domain rather than by a genuine DR challenge. Thus, the TD is a more reliable metric for assessing DR.
Missing data is a pernicious problem in epidemiologic research. Research on the validity of complete case analysis for missing data has typically focused on estimating the average treatment effect (ATE) in the whole population. However, other target populations like the treated (ATT) or external targets can be of substantive interest. In such cases, whether missing covariate data occurs within or outside the target population may impact the validity of complete case analysis. We sought to assess bias in complete case analysis when covariate data is missing outside the target (e.g., missing covariate data among the untreated when estimating the ATT). We simulated a study of the effect of a binary treatment X on a binary outcome Y in the presence of 3 confounders C1-C3 that modified the risk difference (RD). We induced missingness in C1 only among the untreated under 4 scenarios: completely randomly (similar to MCAR); randomly based on C2 and C3 (similar to MAR); randomly based on C1 (similar to MNAR); or randomly based on Y (similar to MAR). We estimated the ATE and ATT using weighting and averaged results across the replicates. We conducted a parallel simulation transporting trial results to a target population in the presence of missing covariate data in the trial. In the complete case analysis, estimated ATE was unbiased only when C1 was MCAR among the untreated. The estimated ATT, on the other hand, was unbiased in all scenarios except when Y caused missingness. The parallel simulation of generalizing and transporting trial results saw similar bias patterns. If missing covariate data is only present outside the target population, complete case analysis is unbiased except when missingness is associated with the outcome.
The remarkable progress of deep learning in dermatological tasks has brought us closer to achieving diagnostic accuracies comparable to those of human experts. However, while large datasets play a crucial role in the development of reliable deep neural network models, the quality of data therein and their correct usage are of paramount importance. Several factors can impact data quality, such as the presence of duplicates, data leakage across train-test partitions, mislabeled images, and the absence of a well-defined test partition. In this paper, we conduct meticulous analyses of two popular dermatological image datasets: DermaMNIST and Fitzpatrick17k, uncovering these data quality issues, measure the effects of these problems on the benchmark results, and propose corrections to the datasets. Besides ensuring the reproducibility of our analysis, by making our analysis pipeline and the accompanying code publicly available, we aim to encourage similar explorations and to facilitate the identification and addressing of potential data quality issues in other large datasets.
Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering and recommendation systems, etc. According to the graph types, the existing KGR models can be roughly divided into three categories, \textit{i.e.,} static models, temporal models, and multi-modal models. The early works in this domain mainly focus on static KGR and tend to directly apply general knowledge graph embedding models to the reasoning task. However, these models are not suitable for more complex but practical tasks, such as inductive static KGR, temporal KGR, and multi-modal KGR. To this end, multiple works have been developed recently, but no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the preliminaries, summaries of KGR models, and typical datasets are introduced and discussed consequently. Moreover, we discuss the challenges and potential opportunities. The corresponding open-source repository is shared on GitHub: //github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.