This paper presents a dataset containing recordings of the electroencephalogram (EEG) and the electromyogram (EMG) from eight subjects who were assisted in moving their right arm by an active orthosis device. The supported movements were elbow joint movements, i.e., flexion and extension of the right arm. While the orthosis was actively moving the subject's arm, some errors were deliberately introduced for a short duration of time. During this time, the orthosis moved in the opposite direction. In this paper, we explain the experimental setup and present some behavioral analyses across all subjects. Additionally, we present an average event-related potential analysis for one subject to offer insights into the data quality and the EEG activity caused by the error introduction. The dataset described herein is openly accessible. The aim of this study was to provide a dataset to the research community, particularly for the development of new methods in the asynchronous detection of erroneous events from the EEG. We are especially interested in the tactile and haptic-mediated recognition of errors, which has not yet been sufficiently investigated in the literature. We hope that the detailed description of the orthosis and the experiment will enable its reproduction and facilitate a systematic investigation of the influencing factors in the detection of erroneous behavior of assistive systems by a large community.
Recent advances in the development of large language models are rapidly changing how online applications function. LLM-based search tools, for instance, offer a natural language interface that can accommodate complex queries and provide detailed, direct responses. At the same time, there have been concerns about the veracity of the information provided by LLM-based tools due to potential mistakes or fabrications that can arise in algorithmically generated text. In a set of online experiments we investigate how LLM-based search changes people's behavior relative to traditional search, and what can be done to mitigate overreliance on LLM-based output. Participants in our experiments were asked to solve a series of decision tasks that involved researching and comparing different products, and were randomly assigned to do so with either an LLM-based search tool or a traditional search engine. In our first experiment, we find that participants using the LLM-based tool were able to complete their tasks more quickly, using fewer but more complex queries than those who used traditional search. Moreover, these participants reported a more satisfying experience with the LLM-based search tool. When the information presented by the LLM was reliable, participants using the tool made decisions with a comparable level of accuracy to those using traditional search, however we observed overreliance on incorrect information when the LLM erred. Our second experiment further investigated this issue by randomly assigning some users to see a simple color-coded highlighting scheme to alert them to potentially incorrect or misleading information in the LLM responses. Overall we find that this confidence-based highlighting substantially increases the rate at which users spot incorrect information, improving the accuracy of their overall decisions while leaving most other measures unaffected.
Deep learning has the potential to revolutionize sports performance, with applications ranging from perception and comprehension to decision. This paper presents a comprehensive survey of deep learning in sports performance, focusing on three main aspects: algorithms, datasets and virtual environments, and challenges. Firstly, we discuss the hierarchical structure of deep learning algorithms in sports performance which includes perception, comprehension and decision while comparing their strengths and weaknesses. Secondly, we list widely used existing datasets in sports and highlight their characteristics and limitations. Finally, we summarize current challenges and point out future trends of deep learning in sports. Our survey provides valuable reference material for researchers interested in deep learning in sports applications.
In many real-world multi-attribute decision-making (MADM) problems, mining the inter-relationships and possible hierarchical structures among the factors are considered to be one of the primary tasks. But, besides that, one major task is to determine an optimal strategy to work on the factors to enhance the effect on the goal attribute. This paper proposes two such strategies, namely parallel and hierarchical effort assignment, and propagation strategies. The concept of effort propagation through a strategy is formally defined and described in the paper. Both the parallel and hierarchical strategies are divided into sub-strategies based on whether the assignment of efforts to the factors is uniform or depends upon some appropriate heuristics related to the factors in the system. The adapted and discussed heuristics are the relative significance and effort propagability of the factors. The strategies are analyzed for a real-life case study regarding Indian high school administrative factors that play an important role in enhancing students' performance. Total effort propagation of around 7%-15% to the goal is seen across the proposed strategies given a total of 1 unit of effort to the directly accessible factors of the system. A comparative analysis is adapted to determine the optimal strategy among the proposed ones to enhance student performance most effectively. The highest effort propagation achieved in the work is approximately 14.4348%. The analysis in the paper establishes the necessity of research towards the direction of effort propagation analysis in case of decision-making problems.
People with visual impairments face numerous challenges when interacting with their environment. Our objective is to develop a device that facilitates communication between individuals with visual impairments and their surroundings. The device will convert visual information into auditory feedback, enabling users to understand their environment in a way that suits their sensory needs. Initially, an object detection model is selected from existing machine learning models based on its accuracy and cost considerations, including time and power consumption. The chosen model is then implemented on a Raspberry Pi, which is connected to a specifically designed tactile device. When the device is touched at a specific position, it provides an audio signal that communicates the identification of the object present in the scene at that corresponding position to the visually impaired individual. Conducted tests have demonstrated the effectiveness of this device in scene understanding, encompassing static or dynamic objects, as well as screen contents such as TVs, computers, and mobile phones.
A major security threat to an integrated circuit (IC) design is the Hardware Trojan attack which is a malicious modification of the design. Previously several papers have investigated into side-channel analysis to detect the presence of Hardware Trojans. The side channel analysis were prescribed in these papers as an alternative to the conventional logic testing for detecting malicious modification in the design. It has been found that these conventional logic testing are ineffective when it comes to detecting small Trojans due to decrease in the sensitivity due to process variations encountered in the manufacturing techniques. The main paper under consideration in this survey report focuses on proposing a new technique to detect Trojans by using multiple-parameter side-channel analysis. The novel idea will be explained thoroughly in this survey report. We also look into several other papers, which talk about single parameter analysis and how they are implemented. We analyzed the short comings of those single parameter analysis techniques and we then show how this multi-parameter analysis technique is better. Finally we will talk about the combined side-channel analysis and logic testing approach in which there is higher detection coverage for hardware Trojan circuits of different types and sizes.
In this paper, we study the problems of detection and recovery of hidden submatrices with elevated means inside a large Gaussian random matrix. We consider two different structures for the planted submatrices. In the first model, the planted matrices are disjoint, and their row and column indices can be arbitrary. Inspired by scientific applications, the second model restricts the row and column indices to be consecutive. In the detection problem, under the null hypothesis, the observed matrix is a realization of independent and identically distributed standard normal entries. Under the alternative, there exists a set of hidden submatrices with elevated means inside the same standard normal matrix. Recovery refers to the task of locating the hidden submatrices. For both problems, and for both models, we characterize the statistical and computational barriers by deriving information-theoretic lower bounds, designing and analyzing algorithms matching those bounds, and proving computational lower bounds based on the low-degree polynomials conjecture. In particular, we show that the space of the model parameters (i.e., number of planted submatrices, their dimensions, and elevated mean) can be partitioned into three regions: the impossible regime, where all algorithms fail; the hard regime, where while detection or recovery are statistically possible, we give some evidence that polynomial-time algorithm do not exist; and finally the easy regime, where polynomial-time algorithms exist.
Driver gaze plays an important role in different gaze-based applications such as driver attentiveness detection, visual distraction detection, gaze behavior understanding, and building driver assistance system. The main objective of this study is to perform a comprehensive summary of driver gaze fundamentals, methods to estimate driver gaze, and it's applications in real world driving scenarios. We first discuss the fundamentals related to driver gaze, involving head-mounted and remote setup based gaze estimation and the terminologies used for each of these data collection methods. Next, we list out the existing benchmark driver gaze datasets, highlighting the collection methodology and the equipment used for such data collection. This is followed by a discussion of the algorithms used for driver gaze estimation, which primarily involves traditional machine learning and deep learning based techniques. The estimated driver gaze is then used for understanding gaze behavior while maneuvering through intersections, on-ramps, off-ramps, lane changing, and determining the effect of roadside advertising structures. Finally, we have discussed the limitations in the existing literature, challenges, and the future scope in driver gaze estimation and gaze-based applications.
The Data Science domain has expanded monumentally in both research and industry communities during the past decade, predominantly owing to the Big Data revolution. Artificial Intelligence (AI) and Machine Learning (ML) are bringing more complexities to data engineering applications, which are now integrated into data processing pipelines to process terabytes of data. Typically, a significant amount of time is spent on data preprocessing in these pipelines, and hence improving its e fficiency directly impacts the overall pipeline performance. The community has recently embraced the concept of Dataframes as the de-facto data structure for data representation and manipulation. However, the most widely used serial Dataframes today (R, pandas) experience performance limitations while working on even moderately large data sets. We believe that there is plenty of room for improvement by taking a look at this problem from a high-performance computing point of view. In a prior publication, we presented a set of parallel processing patterns for distributed dataframe operators and the reference runtime implementation, Cylon [1]. In this paper, we are expanding on the initial concept by introducing a cost model for evaluating the said patterns. Furthermore, we evaluate the performance of Cylon on the ORNL Summit supercomputer.
Substantial efforts have been devoted more recently to presenting various methods for object detection in optical remote sensing images. However, the current survey of datasets and deep learning based methods for object detection in optical remote sensing images is not adequate. Moreover, most of the existing datasets have some shortcomings, for example, the numbers of images and object categories are small scale, and the image diversity and variations are insufficient. These limitations greatly affect the development of deep learning based object detection methods. In the paper, we provide a comprehensive review of the recent deep learning based object detection progress in both the computer vision and earth observation communities. Then, we propose a large-scale, publicly available benchmark for object DetectIon in Optical Remote sensing images, which we name as DIOR. The dataset contains 23463 images and 192472 instances, covering 20 object classes. The proposed DIOR dataset 1) is large-scale on the object categories, on the object instance number, and on the total image number; 2) has a large range of object size variations, not only in terms of spatial resolutions, but also in the aspect of inter- and intra-class size variability across objects; 3) holds big variations as the images are obtained with different imaging conditions, weathers, seasons, and image quality; and 4) has high inter-class similarity and intra-class diversity. The proposed benchmark can help the researchers to develop and validate their data-driven methods. Finally, we evaluate several state-of-the-art approaches on our DIOR dataset to establish a baseline for future research.
Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.