亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present regret minimization algorithms for stochastic contextual MDPs under minimum reachability assumption, using an access to an offline least square regression oracle. We analyze three different settings: where the dynamics is known, where the dynamics is unknown but independent of the context and the most challenging setting where the dynamics is unknown and context-dependent. For the latter, our algorithm obtains $ \tilde{O}\left( \max\{H,{1}/{p_{min}}\}H|S|^{3/2}\sqrt{|A|T\log(\max\{|\mathcal{F}|,|\mathcal{P}|\}/\delta)} \right)$ regret bound, with probability $1-\delta$, where $\mathcal{P}$ and $\mathcal{F}$ are finite and realizable function classes used to approximate the dynamics and rewards respectively, $p_{min}$ is the minimum reachability parameter, $S$ is the set of states, $A$ the set of actions, $H$ the horizon, and $T$ the number of episodes. To our knowledge, our approach is the first optimistic approach applied to contextual MDPs with general function approximation (i.e., without additional knowledge regarding the function class, such as it being linear and etc.). In addition, we present a lower bound of $\Omega(\sqrt{T H |S| |A| \ln(|\mathcal{F}|/|S|)/\ln(|A|)})$, on the expected regret which holds even in the case of known dynamics.

相關內容

通(tong)過學習、實踐或探索所獲得的認識(shi)、判斷(duan)或技能(neng)。

Studying the properties of stochastic noise to optimize complex non-convex functions has been an active area of research in the field of machine learning. Prior work has shown that the noise of stochastic gradient descent improves optimization by overcoming undesirable obstacles in the landscape. Moreover, injecting artificial Gaussian noise has become a popular idea to quickly escape saddle points. Indeed, in the absence of reliable gradient information, the noise is used to explore the landscape, but it is unclear what type of noise is optimal in terms of exploration ability. In order to narrow this gap in our knowledge, we study a general type of continuous-time non-Markovian process, based on fractional Brownian motion, that allows for the increments of the process to be correlated. This generalizes processes based on Brownian motion, such as the Ornstein-Uhlenbeck process. We demonstrate how to discretize such processes which gives rise to the new algorithm fPGD. This method is a generalization of the known algorithms PGD and Anti-PGD. We study the properties of fPGD both theoretically and empirically, demonstrating that it possesses exploration abilities that, in some cases, are favorable over PGD and Anti-PGD. These results open the field to novel ways to exploit noise for training machine learning models.

In this paper, we propose a new covering technique localized for the trajectories of SGD. This localization provides an algorithm-specific complexity measured by the covering number, which can have dimension-independent cardinality in contrast to standard uniform covering arguments that result in exponential dimension dependency. Based on this localized construction, we show that if the objective function is a finite perturbation of a piecewise strongly convex and smooth function with $P$ pieces, i.e. non-convex and non-smooth in general, the generalization error can be upper bounded by $O(\sqrt{(\log n\log(nP))/n})$, where $n$ is the number of data samples. In particular, this rate is independent of dimension and does not require early stopping and decaying step size. Finally, we employ these results in various contexts and derive generalization bounds for multi-index linear models, multi-class support vector machines, and $K$-means clustering for both hard and soft label setups, improving the known state-of-the-art rates.

We consider regret minimization for Adversarial Markov Decision Processes (AMDPs), where the loss functions are changing over time and adversarially chosen, and the learner only observes the losses for the visited state-action pairs (i.e., bandit feedback). While there has been a surge of studies on this problem using Online-Mirror-Descent (OMD) methods, very little is known about the Follow-the-Perturbed-Leader (FTPL) methods, which are usually computationally more efficient and also easier to implement since it only requires solving an offline planning problem. Motivated by this, we take a closer look at FTPL for learning AMDPs, starting from the standard episodic finite-horizon setting. We find some unique and intriguing difficulties in the analysis and propose a workaround to eventually show that FTPL is also able to achieve near-optimal regret bounds in this case. More importantly, we then find two significant applications: First, the analysis of FTPL turns out to be readily generalizable to delayed bandit feedback with order-optimal regret, while OMD methods exhibit extra difficulties (Jin et al., 2022). Second, using FTPL, we also develop the first no-regret algorithm for learning communicating AMDPs in the infinite-horizon setting with bandit feedback and stochastic transitions. Our algorithm is efficient assuming access to an offline planning oracle, while even for the easier full-information setting, the only existing algorithm (Chandrasekaran and Tewari, 2021) is computationally inefficient.

Two aspects of neural networks that have been extensively studied in the recent literature are their function approximation properties and their training by gradient descent methods. The approximation problem seeks accurate approximations with a minimal number of weights. In most of the current literature these weights are fully or partially hand-crafted, showing the capabilities of neural networks but not necessarily their practical performance. In contrast, optimization theory for neural networks heavily relies on an abundance of weights in over-parametrized regimes. This paper balances these two demands and provides an approximation result for shallow networks in $1d$ with non-convex weight optimization by gradient descent. We consider finite width networks and infinite sample limits, which is the typical setup in approximation theory. Technically, this problem is not over-parametrized, however, some form of redundancy reappears as a loss in approximation rate compared to best possible rates.

The $h$-index is a metric used to measure the impact of a user in a publication setting, such as a member of a social network with many highly liked posts or a researcher in an academic domain with many highly cited publications. Specifically, the $h$-index of a user is the largest integer $h$ such that at least $h$ publications of the user have at least $h$ units of positive feedback. We design an algorithm that, given query access to the $n$ publications of a user and each publication's corresponding positive feedback number, outputs a $(1\pm \varepsilon)$-approximation of the $h$-index of this user with probability at least $1-\delta$ in time \[ O(\frac{n \cdot \ln{(1/\delta)}}{\varepsilon^2 \cdot h}), \] where $h$ is the actual $h$-index which is unknown to the algorithm a-priori. We then design a novel lower bound technique that allows us to prove that this bound is in fact asymptotically optimal for this problem in all parameters $n,h,\varepsilon,$ and $\delta$. Our work is one of the first in sublinear time algorithms that addresses obtaining asymptotically optimal bounds, especially in terms of the error and confidence parameters. As such, we focus on designing novel techniques for this task. In particular, our lower bound technique seems quite general -- to showcase this, we also use our approach to prove an asymptotically optimal lower bound for the problem of estimating the number of triangles in a graph in sublinear time, which now is also optimal in the error and confidence parameters. This result improves upon prior lower bounds of Eden, Levi, Ron, and Seshadhri (FOCS'15) for this problem, as well as multiple follow-ups that extended this lower bound to other subgraph counting problems.

We consider the stochastic gradient descent (SGD) algorithm driven by a general stochastic sequence, including i.i.d noise and random walk on an arbitrary graph, among others; and analyze it in the asymptotic sense. Specifically, we employ the notion of `efficiency ordering', a well-analyzed tool for comparing the performance of Markov Chain Monte Carlo (MCMC) samplers, for SGD algorithms in the form of Loewner ordering of covariance matrices associated with the scaled iterate errors in the long term. Using this ordering, we show that input sequences that are more efficient for MCMC sampling also lead to smaller covariance of the errors for SGD algorithms in the limit. This also suggests that an arbitrarily weighted MSE of SGD iterates in the limit becomes smaller when driven by more efficient chains. Our finding is of particular interest in applications such as decentralized optimization and swarm learning, where SGD is implemented in a random walk fashion on the underlying communication graph for cost issues and/or data privacy. We demonstrate how certain non-Markovian processes, for which typical mixing-time based non-asymptotic bounds are intractable, can outperform their Markovian counterparts in the sense of efficiency ordering for SGD. We show the utility of our method by applying it to gradient descent with shuffling and mini-batch gradient descent, reaffirming key results from existing literature under a unified framework. Empirically, we also observe efficiency ordering for variants of SGD such as accelerated SGD and Adam, open up the possibility of extending our notion of efficiency ordering to a broader family of stochastic optimization algorithms.

We study differentially private (DP) stochastic optimization (SO) with data containing outliers and loss functions that are not Lipschitz continuous. To date, the vast majority of work on DP SO assumes that the loss is Lipschitz (i.e. stochastic gradients are uniformly bounded), and their error bounds scale with the Lipschitz parameter of the loss. While this assumption is convenient, it is often unrealistic: in many practical problems where privacy is required, data may contain outliers or be unbounded, causing some stochastic gradients to have large norm. In such cases, the Lipschitz parameter may be prohibitively large, leading to vacuous excess risk bounds. Thus, building on a recent line of work [WXDX20, KLZ22], we make the weaker assumption that stochastic gradients have bounded $k$-th moments for some $k \geq 2$. Compared with works on DP Lipschitz SO, our excess risk scales with the $k$-th moment bound instead of the Lipschitz parameter of the loss, allowing for significantly faster rates in the presence of outliers. For convex and strongly convex loss functions, we provide the first asymptotically optimal excess risk bounds (up to a logarithmic factor). Moreover, in contrast to the prior works [WXDX20, KLZ22], our bounds do not require the loss function to be differentiable/smooth. We also devise an accelerated algorithm that runs in linear time and yields improved (compared to prior works) and nearly optimal excess risk for smooth losses. Additionally, our work is the first to address non-convex non-Lipschitz loss functions satisfying the Proximal-PL inequality; this covers some classes of neural nets, among other practical models. Our Proximal-PL algorithm has nearly optimal excess risk that almost matches the strongly convex lower bound. Lastly, we provide shuffle DP variations of our algorithms, which do not require a trusted curator (e.g. for distributed learning).

Much of the literature on optimal design of bandit algorithms is based on minimization of expected regret. It is well known that designs that are optimal over certain exponential families can achieve expected regret that grows logarithmically in the number of arm plays, at a rate governed by the Lai-Robbins lower bound. In this paper, we show that when one uses such optimized designs, the regret distribution of the associated algorithms necessarily has a very heavy tail, specifically, that of a truncated Cauchy distribution. Furthermore, for $p>1$, the $p$'th moment of the regret distribution grows much faster than poly-logarithmically, in particular as a power of the total number of arm plays. We show that optimized UCB bandit designs are also fragile in an additional sense, namely when the problem is even slightly mis-specified, the regret can grow much faster than the conventional theory suggests. Our arguments are based on standard change-of-measure ideas, and indicate that the most likely way that regret becomes larger than expected is when the optimal arm returns below-average rewards in the first few arm plays, thereby causing the algorithm to believe that the arm is sub-optimal. To alleviate the fragility issues exposed, we show that UCB algorithms can be modified so as to ensure a desired degree of robustness to mis-specification. In doing so, we also provide a sharp trade-off between the amount of UCB exploration and the tail exponent of the resulting regret distribution.

Markov decision processes (MDPs) are formal models commonly used in sequential decision-making. MDPs capture the stochasticity that may arise, for instance, from imprecise actuators via probabilities in the transition function. However, in data-driven applications, deriving precise probabilities from (limited) data introduces statistical errors that may lead to unexpected or undesirable outcomes. Uncertain MDPs (uMDPs) do not require precise probabilities but instead use so-called uncertainty sets in the transitions, accounting for such limited data. Tools from the formal verification community efficiently compute robust policies that provably adhere to formal specifications, like safety constraints, under the worst-case instance in the uncertainty set. We continuously learn the transition probabilities of an MDP in a robust anytime-learning approach that combines a dedicated Bayesian inference scheme with the computation of robust policies. In particular, our method (1) approximates probabilities as intervals, (2) adapts to new data that may be inconsistent with an intermediate model, and (3) may be stopped at any time to compute a robust policy on the uMDP that faithfully captures the data so far. We show the effectiveness of our approach and compare it to robust policies computed on uMDPs learned by the UCRL2 reinforcement learning algorithm in an experimental evaluation on several benchmarks.

Model mismatches prevail in real-world applications. Hence it is important to design robust safe control algorithms for systems with uncertain dynamic models. The major challenge is that uncertainty results in difficulty in finding a feasible safe control in real-time. Existing methods usually simplify the problem such as restricting uncertainty type, ignoring control limits, or forgoing feasibility guarantees. In this work, we overcome these issues by proposing a robust safe control framework for bounded state-dependent uncertainties. We first guarantee the feasibility of safe control for uncertain dynamics by learning a control-limits-aware, uncertainty-robust safety index. Then we show that robust safe control can be formulated as convex problems (Convex Semi-Infinite Programming or Second-Order Cone Programming) and propose corresponding optimal solvers that can run in real-time. In addition, we analyze when and how safety can be preserved under unmodeled uncertainties. Experiment results show that our method successfully finds robust safe control in real-time for different uncertainties and is much less conservative than a strong baseline algorithm.

北京阿比特科技有限公司