Single domain generalization aims to learn a model from a single training domain (source domain) and apply it to multiple unseen test domains (target domains). Existing methods focus on expanding the distribution of the training domain to cover the target domains, but without estimating the domain shift between the source and target domains. In this paper, we propose a new learning paradigm, namely simulate-analyze-reduce, which first simulates the domain shift by building an auxiliary domain as the target domain, then learns to analyze the causes of domain shift, and finally learns to reduce the domain shift for model adaptation. Under this paradigm, we propose a meta-causal learning method to learn meta-knowledge, that is, how to infer the causes of domain shift between the auxiliary and source domains during training. We use the meta-knowledge to analyze the shift between the target and source domains during testing. Specifically, we perform multiple transformations on source data to generate the auxiliary domain, perform counterfactual inference to learn to discover the causal factors of the shift between the auxiliary and source domains, and incorporate the inferred causality into factor-aware domain alignments. Extensive experiments on several benchmarks of image classification show the effectiveness of our method.
In search of robust and generalizable machine learning models, Domain Generalization (DG) has gained significant traction during the past few years. The goal in DG is to produce models which continue to perform well when presented with data distributions different from the ones seen during training. While deep convolutional neural networks (CNN) have been able to achieve outstanding performance on downstream computer vision tasks, they still often fail to generalize on previously unseen data Domains. Therefore, in this work we focus on producing a model which is able to remain robust under data distribution shift and propose an alternative regularization technique for convolutional neural network architectures in the single-source DG image classification setting. To mitigate the problem caused by domain shift between source and target data, we propose augmenting intermediate feature maps of CNNs. Specifically, we pass them through a novel Augmentation Layer to prevent models from overfitting on the training set and improve their cross-domain generalization. To the best of our knowledge, this is the first paper proposing such a setup for the DG image classification setting. Experiments on the DG benchmark datasets of PACS, VLCS, Office-Home and TerraIncognita validate the effectiveness of our method, in which our model surpasses state-of-the-art algorithms in most cases.
Domain generalization (DG) aims to learn from multiple source domains a model that can generalize well on unseen target domains. Existing DG methods mainly learn the representations with invariant marginal distribution of the input features, however, the invariance of the conditional distribution of the labels given the input features is more essential for unknown domain prediction. Meanwhile, the existing of unobserved confounders which affect the input features and labels simultaneously cause spurious correlation and hinder the learning of the invariant relationship contained in the conditional distribution. Interestingly, with a causal view on the data generating process, we find that the input features of one domain are valid instrumental variables for other domains. Inspired by this finding, we propose an instrumental variable-driven DG method (IV-DG) by removing the bias of the unobserved confounders with two-stage learning. In the first stage, it learns the conditional distribution of the input features of one domain given input features of another domain. In the second stage, it estimates the relationship by predicting labels with the learned conditional distribution. Theoretical analyses and simulation experiments show that it accurately captures the invariant relationship. Extensive experiments on real-world datasets demonstrate that IV-DG method yields state-of-the-art results.
Changes in the data distribution at test time can have deleterious effects on the performance of predictive models $p(y|x)$. We consider situations where there are additional meta-data labels (such as group labels), denoted by $z$, that can account for such changes in the distribution. In particular, we assume that the prior distribution $p(y, z)$, which models the dependence between the class label $y$ and the "nuisance" factors $z$, may change across domains, either due to a change in the correlation between these terms, or a change in one of their marginals. However, we assume that the generative model for features $p(x|y, z)$ is invariant across domains. We note that this corresponds to an expanded version of the widely used "label shift" assumption, where the labels now also include the nuisance factors $z$. Based on this observation, we propose a test-time label shift correction that adapts to changes in the joint distribution $p(y, z)$ using EM applied to unlabeled samples from the target domain distribution, $p_t(x)$. Importantly, we are able to avoid fitting a generative model $p(x|y,z)$, and merely need to reweight the outputs of a discriminative model $p_s(y,z|x)$ trained on the source distribution. We evaluate our method, which we call "Test-Time Label-Shift Adaptation" (TTLSA), on several standard image and text datasets, as well as the CheXpert chest X-ray dataset, and show that it improves performance over methods that target invariance to changes in the distribution, as well as baseline empirical risk minimization methods. Code for reproducing experiments is available at //github.com/nalzok/test-time-label-shift .
Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.
Leveraging datasets available to learn a model with high generalization ability to unseen domains is important for computer vision, especially when the unseen domain's annotated data are unavailable. We study a novel and practical problem of Open Domain Generalization (OpenDG), which learns from different source domains to achieve high performance on an unknown target domain, where the distributions and label sets of each individual source domain and the target domain can be different. The problem can be generally applied to diverse source domains and widely applicable to real-world applications. We propose a Domain-Augmented Meta-Learning framework to learn open-domain generalizable representations. We augment domains on both feature-level by a new Dirichlet mixup and label-level by distilled soft-labeling, which complements each domain with missing classes and other domain knowledge. We conduct meta-learning over domains by designing new meta-learning tasks and losses to preserve domain unique knowledge and generalize knowledge across domains simultaneously. Experiment results on various multi-domain datasets demonstrate that the proposed Domain-Augmented Meta-Learning (DAML) outperforms prior methods for unseen domain recognition.
Invariant approaches have been remarkably successful in tackling the problem of domain generalization, where the objective is to perform inference on data distributions different from those used in training. In our work, we investigate whether it is possible to leverage domain information from the unseen test samples themselves. We propose a domain-adaptive approach consisting of two steps: a) we first learn a discriminative domain embedding from unsupervised training examples, and b) use this domain embedding as supplementary information to build a domain-adaptive model, that takes both the input as well as its domain into account while making predictions. For unseen domains, our method simply uses few unlabelled test examples to construct the domain embedding. This enables adaptive classification on any unseen domain. Our approach achieves state-of-the-art performance on various domain generalization benchmarks. In addition, we introduce the first real-world, large-scale domain generalization benchmark, Geo-YFCC, containing 1.1M samples over 40 training, 7 validation, and 15 test domains, orders of magnitude larger than prior work. We show that the existing approaches either do not scale to this dataset or underperform compared to the simple baseline of training a model on the union of data from all training domains. In contrast, our approach achieves a significant improvement.
This paper serves as a survey of recent advances in large margin training and its theoretical foundations, mostly for (nonlinear) deep neural networks (DNNs) that are probably the most prominent machine learning models for large-scale data in the community over the past decade. We generalize the formulation of classification margins from classical research to latest DNNs, summarize theoretical connections between the margin, network generalization, and robustness, and introduce recent efforts in enlarging the margins for DNNs comprehensively. Since the viewpoint of different methods is discrepant, we categorize them into groups for ease of comparison and discussion in the paper. Hopefully, our discussions and overview inspire new research work in the community that aim to improve the performance of DNNs, and we also point to directions where the large margin principle can be verified to provide theoretical evidence why certain regularizations for DNNs function well in practice. We managed to shorten the paper such that the crucial spirit of large margin learning and related methods are better emphasized.
Deep neural networks have achieved remarkable success in computer vision tasks. Existing neural networks mainly operate in the spatial domain with fixed input sizes. For practical applications, images are usually large and have to be downsampled to the predetermined input size of neural networks. Even though the downsampling operations reduce computation and the required communication bandwidth, it removes both redundant and salient information obliviously, which results in accuracy degradation. Inspired by digital signal processing theories, we analyze the spectral bias from the frequency perspective and propose a learning-based frequency selection method to identify the trivial frequency components which can be removed without accuracy loss. The proposed method of learning in the frequency domain leverages identical structures of the well-known neural networks, such as ResNet-50, MobileNetV2, and Mask R-CNN, while accepting the frequency-domain information as the input. Experiment results show that learning in the frequency domain with static channel selection can achieve higher accuracy than the conventional spatial downsampling approach and meanwhile further reduce the input data size. Specifically for ImageNet classification with the same input size, the proposed method achieves 1.41% and 0.66% top-1 accuracy improvements on ResNet-50 and MobileNetV2, respectively. Even with half input size, the proposed method still improves the top-1 accuracy on ResNet-50 by 1%. In addition, we observe a 0.8% average precision improvement on Mask R-CNN for instance segmentation on the COCO dataset.
Model-agnostic meta-learners aim to acquire meta-learned parameters from similar tasks to adapt to novel tasks from the same distribution with few gradient updates. With the flexibility in the choice of models, those frameworks demonstrate appealing performance on a variety of domains such as few-shot image classification and reinforcement learning. However, one important limitation of such frameworks is that they seek a common initialization shared across the entire task distribution, substantially limiting the diversity of the task distributions that they are able to learn from. In this paper, we augment MAML with the capability to identify the mode of tasks sampled from a multimodal task distribution and adapt quickly through gradient updates. Specifically, we propose a multimodal MAML (MMAML) framework, which is able to modulate its meta-learned prior parameters according to the identified mode, allowing more efficient fast adaptation. We evaluate the proposed model on a diverse set of few-shot learning tasks, including regression, image classification, and reinforcement learning. The results not only demonstrate the effectiveness of our model in modulating the meta-learned prior in response to the characteristics of tasks but also show that training on a multimodal distribution can produce an improvement over unimodal training.