亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In recent years, the transition to cloud-based platforms in the IT sector has emphasized the significance of cloud incident root cause analysis to ensure service reliability and maintain customer trust. Central to this process is the efficient determination of root causes, a task made challenging due to the complex nature of contemporary cloud infrastructures. Despite the proliferation of AI-driven tools for root cause identification, their applicability remains limited by the inconsistent quality of their outputs. This paper introduces a method for enhancing confidence estimation in root cause analysis tools by prompting retrieval-augmented large language models (LLMs). This approach operates in two phases. Initially, the model evaluates its confidence based on historical incident data, considering its assessment of the evidence strength. Subsequently, the model reviews the root cause generated by the predictor. An optimization step then combines these evaluations to determine the final confidence assignment. Experimental results illustrate that our method enables the model to articulate its confidence effectively, providing a more calibrated score. We address research questions evaluating the ability of our method to produce calibrated confidence scores using LLMs, the impact of domain-specific retrieved examples on confidence estimates, and its potential generalizability across various root cause analysis models. Through this, we aim to bridge the confidence estimation gap, aiding on-call engineers in decision-making and bolstering the efficiency of cloud incident management.

相關內容

Current 3D segmentation methods heavily rely on large-scale point-cloud datasets, which are notoriously laborious to annotate. Few attempts have been made to circumvent the need for dense per-point annotations. In this work, we look at weakly-supervised 3D semantic instance segmentation. The key idea is to leverage 3D bounding box labels which are easier and faster to annotate. Indeed, we show that it is possible to train dense segmentation models using only bounding box labels. At the core of our method, \name{}, lies a deep model, inspired by classical Hough voting, that directly votes for bounding box parameters, and a clustering method specifically tailored to bounding box votes. This goes beyond commonly used center votes, which would not fully exploit the bounding box annotations. On ScanNet test, our weakly supervised model attains leading performance among other weakly supervised approaches (+18 mAP@50). Remarkably, it also achieves 97% of the mAP@50 score of current fully supervised models. To further illustrate the practicality of our work, we train Box2Mask on the recently released ARKitScenes dataset which is annotated with 3D bounding boxes only, and show, for the first time, compelling 3D instance segmentation masks.

We characterise the learning of a mixture of two clouds of data points with generic centroids via empirical risk minimisation in the high dimensional regime, under the assumptions of generic convex loss and convex regularisation. Each cloud of data points is obtained via a double-stochastic process, where the sample is obtained from a Gaussian distribution whose variance is itself a random parameter sampled from a scalar distribution $\varrho$. As a result, our analysis covers a large family of data distributions, including the case of power-law-tailed distributions with no covariance, and allows us to test recent "Gaussian universality" claims. We study the generalisation performance of the obtained estimator, we analyse the role of regularisation, and we analytically characterise the separability transition.

3D object detection in point clouds is important for autonomous driving systems. A primary challenge in 3D object detection stems from the sparse distribution of points within the 3D scene. Existing high-performance methods typically employ 3D sparse convolutional neural networks with small kernels to extract features. To reduce computational costs, these methods resort to submanifold sparse convolutions, which prevent the information exchange among spatially disconnected features. Some recent approaches have attempted to address this problem by introducing large-kernel convolutions or self-attention mechanisms, but they either achieve limited accuracy improvements or incur excessive computational costs. We propose HEDNet, a hierarchical encoder-decoder network for 3D object detection, which leverages encoder-decoder blocks to capture long-range dependencies among features in the spatial space, particularly for large and distant objects. We conducted extensive experiments on the Waymo Open and nuScenes datasets. HEDNet achieved superior detection accuracy on both datasets than previous state-of-the-art methods with competitive efficiency. The code is available at //github.com/zhanggang001/HEDNet.

Faults occurring in ad-hoc robot networks may fatally perturb their topologies leading to disconnection of subsets of those networks. Optimal topology synthesis is generally resource-intensive and time-consuming to be done in real time for large ad-hoc robot networks. One should only perform topology re-computations if the probability of topology recoverability after the occurrence of any fault surpasses that of its irrecoverability. We formulate this problem as a binary classification problem. Then, we develop a two-pathway data-driven model based on Bayesian Gaussian mixture models that predicts the solution to a typical problem by two different pre-fault and post-fault prediction pathways. The results, obtained by the integration of the predictions of those pathways, clearly indicate the success of our model in solving the topology (ir)recoverability prediction problem compared to the best of current strategies found in the literature.

We study the problems of estimating the past and future evolutions of two diffusion processes that spread concurrently on a network. Specifically, given a known network $G=(V, \overrightarrow{E})$ and a (possibly noisy) snapshot $\mathcal{O}_n$ of its state taken at (a possibly unknown) time $W$, we wish to determine the posterior distributions of the initial state of the network and the infection times of its nodes. These distributions are useful in finding source nodes of epidemics and rumors -- $\textit{backward inference}$ -- , and estimating the spread of a fixed set of source nodes -- $\textit{forward inference}$. To model the interaction between the two processes, we study an extension of the independent-cascade (IC) model where, when a node gets infected with either process, its susceptibility to the other one changes. First, we derive the exact joint probability of the initial state of the network and the observation-snapshot $\mathcal{O}_n$. Then, using the machinery of factor-graphs, factor-graph transformations, and the generalized distributive-law, we derive a Belief-Propagation (BP) based algorithm that is scalable to large networks and can converge on graphs of arbitrary topology (at a likely expense in approximation accuracy).

We investigate the challenge of task planning for multi-task embodied agents in open-world environments. Two main difficulties are identified: 1) executing plans in an open-world environment (e.g., Minecraft) necessitates accurate and multi-step reasoning due to the long-term nature of tasks, and 2) as vanilla planners do not consider how easy the current agent can achieve a given sub-task when ordering parallel sub-goals within a complicated plan, the resulting plan could be inefficient or even infeasible. To this end, we propose "$\underline{D}$escribe, $\underline{E}$xplain, $\underline{P}$lan and $\underline{S}$elect" ($\textbf{DEPS}$), an interactive planning approach based on Large Language Models (LLMs). DEPS facilitates better error correction on initial LLM-generated $\textit{plan}$ by integrating $\textit{description}$ of the plan execution process and providing self-$\textit{explanation}$ of feedback when encountering failures during the extended planning phases. Furthermore, it includes a goal $\textit{selector}$, which is a trainable module that ranks parallel candidate sub-goals based on the estimated steps of completion, consequently refining the initial plan. Our experiments mark the milestone of the first zero-shot multi-task agent that can robustly accomplish 70+ Minecraft tasks and nearly double the overall performances. Further testing reveals our method's general effectiveness in popularly adopted non-open-ended domains as well (i.e., ALFWorld and tabletop manipulation). The ablation and exploratory studies detail how our design beats the counterparts and provide a promising update on the $\texttt{ObtainDiamond}$ grand challenge with our approach. The code is released at //github.com/CraftJarvis/MC-Planner.

Outdoor LiDAR point clouds are typically large-scale and complexly distributed. To achieve efficient and accurate registration, emphasizing the similarity among local regions and prioritizing global local-to-local matching is of utmost importance, subsequent to which accuracy can be enhanced through cost-effective fine registration. In this paper, a novel hierarchical neural network with double attention named HDMNet is proposed for large-scale outdoor LiDAR point cloud registration. Specifically, A novel feature consistency enhanced double-soft matching network is introduced to achieve two-stage matching with high flexibility while enlarging the receptive field with high efficiency in a patch-to patch manner, which significantly improves the registration performance. Moreover, in order to further utilize the sparse matching information from deeper layer, we develop a novel trainable embedding mask to incorporate the confidence scores of correspondences obtained from pose estimation of deeper layer, eliminating additional computations. The high-confidence keypoints in the sparser point cloud of the deeper layer correspond to a high-confidence spatial neighborhood region in shallower layer, which will receive more attention, while the features of non-key regions will be masked. Extensive experiments are conducted on two large-scale outdoor LiDAR point cloud datasets to demonstrate the high accuracy and efficiency of the proposed HDMNet.

We study the performance of a cloud-based GPU-accelerated inference server to speed up event reconstruction in neutrino data batch jobs. Using detector data from the ProtoDUNE experiment and employing the standard DUNE grid job submission tools, we attempt to reprocess the data by running several thousand concurrent grid jobs, a rate we expect to be typical of current and future neutrino physics experiments. We process most of the dataset with the GPU version of our processing algorithm and the remainder with the CPU version for timing comparisons. We find that a 100-GPU cloud-based server is able to easily meet the processing demand, and that using the GPU version of the event processing algorithm is two times faster than processing these data with the CPU version when comparing to the newest CPUs in our sample. The amount of data transferred to the inference server during the GPU runs can overwhelm even the highest-bandwidth network switches, however, unless care is taken to observe network facility limits or otherwise distribute the jobs to multiple sites. We discuss the lessons learned from this processing campaign and several avenues for future improvements.

All-in-one adverse weather removal is an emerging topic on image restoration, which aims to restore multiple weather degradation in an unified model, and the challenging are twofold. First, discovering and handling the property of multi-domain in target distribution formed by multiple weather conditions. Second, design efficient and effective operations for different degradation types. To address this problem, most prior works focus on the multi-domain caused by weather type. Inspired by inter\&intra-domain adaptation literature, we observed that not only weather type but also weather severity introduce multi-domain within each weather type domain, which is ignored by previous methods, and further limit their performance. To this end, we proposed a degradation type and severity aware model, called \textbf{UtilityIR}, for blind all-in-one bad weather image restoration. To extract weather information from single image, we proposed a novel Marginal Quality Ranking Loss (MQRL) and utilized Contrastive Loss (CL) to guide weather severity and type extraction, and leverage a bag of novel techniques such as Multi-Head Cross Attention (MHCA) and Local-Global Adaptive Instance Normalization (LG-AdaIN) to efficiently restore spatial varying weather degradation. The proposed method can significantly outperform the SOTA methods subjectively and objectively on different weather restoration tasks with a large margin, and enjoy less model parameters. Proposed method even can restore \textbf{unseen} domain combined multiple degradation images, and modulating restoration level. Implementation code will be available at {//github.com/fordevoted/UtilityIR}{\textit{this repository}}

We study the problem of efficient semantic segmentation for large-scale 3D point clouds. By relying on expensive sampling techniques or computationally heavy pre/post-processing steps, most existing approaches are only able to be trained and operate over small-scale point clouds. In this paper, we introduce RandLA-Net, an efficient and lightweight neural architecture to directly infer per-point semantics for large-scale point clouds. The key to our approach is to use random point sampling instead of more complex point selection approaches. Although remarkably computation and memory efficient, random sampling can discard key features by chance. To overcome this, we introduce a novel local feature aggregation module to progressively increase the receptive field for each 3D point, thereby effectively preserving geometric details. Extensive experiments show that our RandLA-Net can process 1 million points in a single pass with up to 200X faster than existing approaches. Moreover, our RandLA-Net clearly surpasses state-of-the-art approaches for semantic segmentation on two large-scale benchmarks Semantic3D and SemanticKITTI.

北京阿比特科技有限公司