亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the problems of estimating the past and future evolutions of two diffusion processes that spread concurrently on a network. Specifically, given a known network $G=(V, \overrightarrow{E})$ and a (possibly noisy) snapshot $\mathcal{O}_n$ of its state taken at (a possibly unknown) time $W$, we wish to determine the posterior distributions of the initial state of the network and the infection times of its nodes. These distributions are useful in finding source nodes of epidemics and rumors -- $\textit{backward inference}$ -- , and estimating the spread of a fixed set of source nodes -- $\textit{forward inference}$. To model the interaction between the two processes, we study an extension of the independent-cascade (IC) model where, when a node gets infected with either process, its susceptibility to the other one changes. First, we derive the exact joint probability of the initial state of the network and the observation-snapshot $\mathcal{O}_n$. Then, using the machinery of factor-graphs, factor-graph transformations, and the generalized distributive-law, we derive a Belief-Propagation (BP) based algorithm that is scalable to large networks and can converge on graphs of arbitrary topology (at a likely expense in approximation accuracy).

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Compressing a predefined deep neural network (DNN) into a compact sub-network with competitive performance is crucial in the efficient machine learning realm. This topic spans various techniques, from structured pruning to neural architecture search, encompassing both pruning and erasing operators perspectives. Despite advancements, existing methods suffers from complex, multi-stage processes that demand substantial engineering and domain knowledge, limiting their broader applications. We introduce the third-generation Only-Train-Once (OTOv3), which first automatically trains and compresses a general DNN through pruning and erasing operations, creating a compact and competitive sub-network without the need of fine-tuning. OTOv3 simplifies and automates the training and compression process, minimizes the engineering efforts required from users. It offers key technological advancements: (i) automatic search space construction for general DNNs based on dependency graph analysis; (ii) Dual Half-Space Projected Gradient (DHSPG) and its enhanced version with hierarchical search (H2SPG) to reliably solve (hierarchical) structured sparsity problems and ensure sub-network validity; and (iii) automated sub-network construction using solutions from DHSPG/H2SPG and dependency graphs. Our empirical results demonstrate the efficacy of OTOv3 across various benchmarks in structured pruning and neural architecture search. OTOv3 produces sub-networks that match or exceed the state-of-the-arts. The source code will be available at //github.com/tianyic/only_train_once.

These are self-contained lecture notes for spectral independence. For an $n$-vertex graph, the spectral independence condition is a bound on the maximum eigenvalue of the $n\times n$ influence matrix whose entries capture the influence between pairs of vertices, it is closely related to the covariance matrix. We will present recent results showing that spectral independence implies the mixing time of the Glauber dynamics is polynomial (where the degree of the polynomial depends on certain parameters). The proof utilizes local-to-global theorems which we will detail in these notes. Finally, we will present more recent results showing that spectral independence implies an optimal bound on the relaxation time (inverse spectral gap) and with some additional conditions implies an optimal mixing time bound of $O(n\log{n})$ for the Glauber dynamics. We also present the results of Anari, Liu, Oveis Gharan, and Vinzant (2019) for generating a random basis of a matroid. The analysis of the associated bases-exchange walk utilizes the local-to-global theorems used for spectral independence with the Trickle-Down Theorem of Oppenheim (2018) to analyze the local walks. Our focus in these notes is on the analysis of the spectral gap of the associated Markov chains from a functional analysis perspective, and we present proofs of the associated local-to-global theorems from this same Markov chain perspective.

The resilience of internet service is crucial for ensuring consistent communication, facilitating emergency response in digitally-dependent society. Due to empirical data constraints, there has been limited research on internet service disruptions during extreme weather events. To bridge this gap, this study utilizes observational datasets on internet performance to quantitatively assess extent of internet disruption during two recent extreme weather events. Taking Harris County in United States as study region, we jointly analyzed the hazard severity and the associated internet disruptions in two extreme weather events. The results show that hazard events significantly impacted regional internet connectivity. There exists a pronounced temporal synchronicity between magnitude of disruption and hazard severity: as severity of hazards intensifies, internet disruptions correspondingly escalate, and eventually return to baseline levels post-event. Spatial analyses show internet service disruptions can happen even in areas not directly impacted by hazards, demonstrating that repercussions of hazards extend beyond immediate area of impact. This interplay of temporal synchronization and spatial variance underscores complex relationships between hazard severity and Internet disruption. Socio-demographic analysis suggests vulnerable communities, already grappling with myriad challenges, face exacerbated service disruptions during hazard events, emphasizing the need for prioritized disaster mitigation strategiesfor improving the resilience of internet services. To the best of our knowledge, this research is among the first studies to examine the Internet disruptions during hazardous events using a quantitative observational dataset. Insights obtained hold significant implications for city administrators, guiding them towards more resilient and equitable infrastructure planning.

This paper presents a novel solution to address the challenges in achieving energy efficiency and cooperation for collision avoidance in UAV swarms. The proposed method combines Artificial Potential Field (APF) and Particle Swarm Optimization (PSO) techniques. APF provides environmental awareness and implicit coordination to UAVs, while PSO searches for collision-free and energy-efficient trajectories for each UAV in a decentralized manner under the implicit coordination. This decentralized approach is achieved by minimizing a novel cost function that leverages the advantages of the active contour model from image processing. Additionally, future trajectories are predicted by approximating the minima of the novel cost function using calculus of variation, which enables proactive actions and defines the initial conditions for PSO. We propose a two-branch trajectory planning framework that ensures UAVs only change altitudes when necessary for energy considerations. Extensive experiments are conducted to evaluate the effectiveness and efficiency of our method in various situations.

This study presents the outcomes of empirical investigations pertaining to human-vehicle interactions involving an autonomous vehicle equipped with both internal and external Human Machine Interfaces (HMIs) within a crosswalk scenario. The internal and external HMIs were integrated with implicit communication techniques, incorporating a combination of gentle and aggressive braking maneuvers within the crosswalk. Data were collected through a combination of questionnaires and quantifiable metrics, including pedestrian decision to cross related to the vehicle distance and speed. The questionnaire responses reveal that pedestrians experience enhanced safety perceptions when the external HMI and gentle braking maneuvers are used in tandem. In contrast, the measured variables demonstrate that the external HMI proves effective when complemented by the gentle braking maneuver. Furthermore, the questionnaire results highlight that the internal HMI enhances passenger confidence only when paired with the aggressive braking maneuver.

This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.

Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: //github.com/MikeWangWZHL/Solo-Performance-Prompting.git.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

北京阿比特科技有限公司