亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantum communication can enhance internet technology by enabling novel applications that are provably impossible classically. The successful execution of such applications relies on the generation of quantum entanglement between different users of the network which meets stringent performance requirements. Alongside traditional metrics such as throughput and jitter, one must ensure the generated entanglement is of sufficiently high quality. Meeting such performance requirements demands a careful orchestration of many devices in the network, giving rise to a fundamentally new scheduling problem. Furthermore, technological limitations of near-term quantum devices impose significant constraints on scheduling methods hoping to meet performance requirements. In this work, we propose the first end-to-end design of a centralized quantum network with multiple users that orchestrates the delivery of entanglement which meets quality-of-service (QoS) requirements of applications. We achieve this by using a centrally constructed schedule that manages usage of devices and ensures the coordinated execution of different quantum operations throughout the network. We use periodic task scheduling and resource-constrained project scheduling techniques, including a novel heuristic, to construct the schedules. Our simulations of four small networks using hardware-validated network parameters, and of a real-world fiber topology using futuristic parameters, illustrate trade-offs between traditional and quantum performance metrics.

相關內容

For many reinforcement learning (RL) applications, specifying a reward is difficult. This paper considers an RL setting where the agent obtains information about the reward only by querying an expert that can, for example, evaluate individual states or provide binary preferences over trajectories. From such expensive feedback, we aim to learn a model of the reward that allows standard RL algorithms to achieve high expected returns with as few expert queries as possible. To this end, we propose Information Directed Reward Learning (IDRL), which uses a Bayesian model of the reward and selects queries that maximize the information gain about the difference in return between plausibly optimal policies. In contrast to prior active reward learning methods designed for specific types of queries, IDRL naturally accommodates different query types. Moreover, it achieves similar or better performance with significantly fewer queries by shifting the focus from reducing the reward approximation error to improving the policy induced by the reward model. We support our findings with extensive evaluations in multiple environments and with different query types.

This paper explores three approaches for protecting cloud application data planes to prevent unauthorized access to the application and its data and to prevent unwanted data exfiltration. Through an exploration of various concrete security architectures, we focus on (1) Cloud Security Perimeters to provide a boundary around data and infrastructure in the cloud that provides a line of defense both to improper access to sensitive information and the exfiltration of that information, (2) Cloud Landing Points to provide a safe integration point between parts of your cloud applications and on-premises applications to communicate through, and (3) Zero Trust security architectures that are built on the principles of defense in depth and least-privilege access. Using these approaches together provides critical protection for services and applications as they transition from traditional on-premises network security to the Cloud security architectures, and then to potentially Zero Trust security architectures.

Differentiable architecture search (DARTS) has been a popular one-shot paradigm for NAS due to its high efficiency. It introduces trainable architecture parameters to represent the importance of candidate operations and proposes first/second-order approximation to estimate their gradients, making it possible to solve NAS by gradient descent algorithm. However, our in-depth empirical results show that the approximation will often distort the loss landscape, leading to the biased objective to optimize and in turn inaccurate gradient estimation for architecture parameters. This work turns to zero-order optimization and proposes a novel NAS scheme, called ZARTS, to search without enforcing the above approximation. Specifically, three representative zero-order optimization methods are introduced: RS, MGS, and GLD, among which MGS performs best by balancing the accuracy and speed. Moreover, we explore the connections between RS/MGS and gradient descent algorithm and show that our ZARTS can be seen as a robust gradient-free counterpart to DARTS. Extensive experiments on multiple datasets and search spaces show the remarkable performance of our method. In particular, results on 12 benchmarks verify the outstanding robustness of ZARTS, where the performance of DARTS collapses due to its known instability issue. Also, we search on the search space of DARTS to compare with peer methods, and our discovered architecture achieves 97.54% accuracy on CIFAR-10 and 75.7% top-1 accuracy on ImageNet, which are state-of-the-art performance.

We contribute to fulfil the long-lasting gap in the understanding of the spatial search with multiple marked vertices. The theoretical framework is that of discrete-time quantum walks (QW), i.e. local unitary matrices that drive the evolution of a single particle on the lattice. QW based search algorithms are well understood when they have to tackle the fundamental problem of finding only one marked element in a $d-$dimensional grid and it has been proven they provide a quadratic advantage over classical searching protocols. However, once we consider to search more than one element, the behaviour of the algorithm may be affected by the spatial configuration of the marked elements, due to the quantum interference among themselves and even the quantum advantage is no longer granted. Here our main contribution is twofold : (i) we provide strong numerical evidence that spatial configurations are almost all optimal; and (ii) we analytically prove that the quantum advantage with respect to the classical counterpart is not always granted and it does depend on the proportion of searched elements over the total number of grid points $\tau$. We finally providing a clear phase diagram for the QW search advantage with respect to the classical random algorithm.

In this paper, the problem of training federated learning (FL) algorithms over a realistic wireless network is studied. In particular, in the considered model, wireless users execute an FL algorithm while training their local FL models using their own data and transmitting the trained local FL models to a base station (BS) that will generate a global FL model and send it back to the users. Since all training parameters are transmitted over wireless links, the quality of the training will be affected by wireless factors such as packet errors and the availability of wireless resources. Meanwhile, due to the limited wireless bandwidth, the BS must select an appropriate subset of users to execute the FL algorithm so as to build a global FL model accurately. This joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize an FL loss function that captures the performance of the FL algorithm. To address this problem, a closed-form expression for the expected convergence rate of the FL algorithm is first derived to quantify the impact of wireless factors on FL. Then, based on the expected convergence rate of the FL algorithm, the optimal transmit power for each user is derived, under a given user selection and uplink resource block (RB) allocation scheme. Finally, the user selection and uplink RB allocation is optimized so as to minimize the FL loss function. Simulation results show that the proposed joint federated learning and communication framework can reduce the FL loss function value by up to 10% and 16%, respectively, compared to: 1) An optimal user selection algorithm with random resource allocation and 2) a standard FL algorithm with random user selection and resource allocation.

The radio access network (RAN) part of the next-generation wireless networks will require efficient solutions for satisfying low latency and high-throughput services. The open RAN (O-RAN) is one of the candidates to achieve this goal, in addition to increasing vendor diversity and promoting openness. In the O-RAN architecture, network functions are executed in central units (CU), distributed units (DU), and radio units (RU). These entities are virtualized on general-purpose CPUs and form a processing pool. These processing pools can be located in different geographical places and have limited capacity, affecting the energy consumption and the performance of networks. Additionally, since user demand is not deterministic, special attention should be paid to allocating resource blocks to users by ensuring their expected quality of service for latency-sensitive traffic flows. In this paper, we propose a joint optimization solution to enhance energy efficiency and provide delay guarantees to the users in the O-RAN architecture. We formulate this novel problem and linearize it to provide a solution with a mixed-integer linear problem (MILP) solver. We compare this with a baseline that addresses this optimization problem using a disjoint approach. The results show that our approach outperforms the baseline method in terms of energy efficiency.

We study private classical communication over quantum multiple-access channels. For an arbitrary number of transmitters, we derive a regularized expression of the capacity region. In the case of degradable channels, we establish a single-letter expression for the best achievable sum-rate and prove that this quantity also corresponds to the best achievable sum-rate for quantum communication over degradable quantum multiple-access channels. In our achievability result, we decouple the reliability and privacy constraints, which are handled via source coding with quantum side information and universal hashing, respectively. Hence, we also establish that the multi-user coding problem under consideration can be handled solely via point-to-point coding techniques. As a by-product of independent interest, we derive a distributed leftover hash lemma against quantum side information that ensures privacy in our achievability result.

Multi-access edge computing (MEC) is a key enabler to reduce the latency of vehicular network. Due to the vehicles mobility, their requested services (e.g., infotainment services) should frequently be migrated across different MEC servers to guarantee their stringent quality of service requirements. In this paper, we study the problem of service migration in a MEC-enabled vehicular network in order to minimize the total service latency and migration cost. This problem is formulated as a nonlinear integer program and is linearized to help obtaining the optimal solution using off-the-shelf solvers. Then, to obtain an efficient solution, it is modeled as a multi-agent Markov decision process and solved by leveraging deep Q learning (DQL) algorithm. The proposed DQL scheme performs a proactive services migration while ensuring their continuity under high mobility constraints. Finally, simulations results show that the proposed DQL scheme achieves close-to-optimal performance.

The 5G wireless networks are potentially revolutionizing future technologies. The 5G technologies are expected to foresee demands of diverse vertical applications with diverse requirements including high traffic volume, massive connectivity, high quality of service, and low latency. To fulfill such requirements in 5G and beyond, new emerging technologies such as SDN, NFV, MEC, and CC are being deployed. However, these technologies raise several issues regarding transparency, decentralization, and reliability. Furthermore, 5G networks are expected to connect many heterogeneous devices and machines which will raise several security concerns regarding users' confidentiality, data privacy, and trustworthiness. To work seamlessly and securely in such scenarios, future 5G networks need to deploy smarter and more efficient security functions. Motivated by the aforementioned issues, blockchain was proposed by researchers to overcome 5G issues because of its capacities to ensure transparency, data reliability, trustworthiness, immutability in a distributed environment. Indeed, blockchain has gained momentum as a novel technology that gives rise to a plethora of new decentralized technologies. In this chapter, we discuss the integration of the blockchain with 5G networks and beyond. We then present how blockchain applications in 5G networks and beyond could facilitate enabling various services at the edge and the core.

Federated Edge Learning (FEEL) involves the collaborative training of machine learning models among edge devices, with the orchestration of a server in a wireless edge network. Due to frequent model updates, FEEL needs to be adapted to the limited communication bandwidth, scarce energy of edge devices, and the statistical heterogeneity of edge devices' data distributions. Therefore, a careful scheduling of a subset of devices for training and uploading models is necessary. In contrast to previous work in FEEL where the data aspects are under-explored, we consider data properties at the heart of the proposed scheduling algorithm. To this end, we propose a new scheduling scheme for non-independent and-identically-distributed (non-IID) and unbalanced datasets in FEEL. As the data is the key component of the learning, we propose a new set of considerations for data characteristics in wireless scheduling algorithms in FEEL. In fact, the data collected by the devices depends on the local environment and usage pattern. Thus, the datasets vary in size and distributions among the devices. In the proposed algorithm, we consider both data and resource perspectives. In addition to minimizing the completion time of FEEL as well as the transmission energy of the participating devices, the algorithm prioritizes devices with rich and diverse datasets. We first define a general framework for the data-aware scheduling and the main axes and requirements for diversity evaluation. Then, we discuss diversity aspects and some exploitable techniques and metrics. Next, we formulate the problem and present our FEEL scheduling algorithm. Evaluations in different scenarios show that our proposed FEEL scheduling algorithm can help achieve high accuracy in few rounds with a reduced cost.

北京阿比特科技有限公司